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Objectives  

 

After studying this chapter you will understand: 

 

 The vectors and scalar quantities 

 The basic operations of vectors like addition, subtraction and scalar 

and vector multiplication and their properties 
 How to differentiate and integrate vector quantities 

 The special operator called the del operator  
 Some properties of grad, divergence and curl 

 The basic integral theorems 
 The rectangular, cylindrical and spherical coordinates 

 The three laws of newton  
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1. Introduction 
 

In our daily life we see a wide variety of objects in motion. The branch, which deals with 

the motion of objects and objects at rest in equilibrium, is called MECHANICS. This 

science of motion of objects is divided into kinematics and dynamics. In kinematics, we 

study motion only without its cause in terms of the quantities such as displacement, 

velocity etc., so it is the geometrical description of motion. In dynamics, we study the 

cause of motion and the properties of moving objects by studying the equation of 

motion containing force. 

Today Mechanics is considered as the fundamental area of physics, since other 

disciplines of physics such as vibration and waves, thermal physics, electromagnetism 

etc. require a sound knowledge of mechanics. The Rise of mechanics started when 

serious observations were made to understand the motion of bodies in daily life on one 

hand and motion of planets on the other. We know that Newton’s laws of motion form 

the basis of mechanics. These laws appears simple to us, but it took more than 2000 

years, from the Aristotelian views of 4th century BC to 17th Century AD when Newton put 

forward his laws, to arrive at right conclusions. Observation, experiment and careful 

measurement are the hallmarks of modern science. It was in all these respects that 

Galileo speculated on the properties of matter in motion. Galileo’s work set the tone and 

the seventeenth century saw a fast development in mechanics. Tycho Brahe’s detailed 

observations of planetary motion enabled Johannes Kepler to arrive at his three laws of 

planetary motion. Eventually, it was Isaac Newton who along with his law of universal 

gravitation, which provides a complete description of all material bodies in the universe. 

The only systems where the Newtonian mechanics fails are the subatomic systems and 

relativistic high-speed particles.  

In this and next chapter, we study the dynamics of a particle and system of particles. By 

a point or particle we mean an object having some mass but having negligible dimension 

relative to the dimension of other objects in the system under consideration. 

 

 

 

2. Vectors 

 

The most important concepts used for describing motion are change in position 

(displacement), rate of change of position (velocity) and the rate of change of velocity 

(acceleration). We need a language for describing motion and this is best done with the 

help of mathematics. Therefore, we will first take a brief journey of some mathematical 

tools of vector algebra and Analysis. 

Vector and scalar - A physical quantity that can be completely described by a number 

(magnitude) and a specific direction is known to be a vector quantity. But if it is only 
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sufficient to have magnitude for its complete description, then it is called a scalar 

quantity. 

Vector notation – In writing, a vector is simply denoted by the English Capital alphabet 

having an arrow overhead it and in print, it is represented as a bold letter.  Graphically, 

it is shown as an arrow pointing in some direction and its tail is attached to the origin of 

an axis system. 

Now some times a quantity looks like a vector but it is actually not, for example, angle 

may appear as having direction associated with it, but it is a ratio of two sides of a 

triangle. Let us clarify it further with the help of an example: 

Suppose I rotate a book as shown in following figure, first in the horizontal plane by 90 

degree and then rotating it in a vertical plane by 90 degree again. 

 Let this position be A. 

 

Now if I rotate first in vertical plane by 90 degree and then rotating again by 90 degree 

in horizontal plane. 

     Let this position be B. 



Ch.1 Fundamentals of Dynamics 
 

Institute of life long learning Page 5 
 

 

 

Now it is obvious from the figure that position A is not similar or equal to position B, but 

vector addition is commutative, i.e., either you add A into B, or B into A, resultant is 

equal. Hence angle don’t follow the vector addition property, so it is a scalar 

Similarly there are other operations like reflection in a plane or inversion in space. 

Here we have some vectors in which if we interchange x position with –x, the value of 

vector does not change, for example, we know angular momentum L=r X p, here if we 

change x and y axis with –x and –y axis, the direction of angular momentum does not 

change, such type of vector which acts along an axis are known as PSEUDO VECTORS 

OR AXIAL VECTORS. Torque is another example of the axial vector. 

There are other vectors where the change of variable x with –x, also change the sign of 

the physical quantity associated with the vector, for example, when we change direction 

of acceleration a with – a, the force vector F =ma , change its direction as well , such 

vectors are known as POLAR VECTORS. Other examples of polar vectors are 

displacement, velocity, linear momentum etc. 
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3. Vector Algebra 

Laws of Vector Addition: There are two ways by which we can add them they are 

following- 

 (A) Triangle law of vector addition:- 

“To add two vectors, we place tip of one on the tail of other so as the form two sides of 

a triangle, then the third side give the resultant vector”. 

(B) Parallelogram law of vector addition:- 

“To add two vectors, we join the tails of the two vectors so to make the two common 

sides of a parallelogram, then the diagonal starting from the origin of the common sides 

will give the resultant vector”. 

They are depicted by following figures    
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So the Resultant R is written mathematically as vector sum of two vectors A and B. 

When we have more than two vectors to add, we simply either add them one by one in 

pair or we can put the tip of one on the another in sequence and make a polygon than 

the resultant of addition is the vector formed by the joining the tip of last vector with the 

tail of the first vector as shown below: 
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Here we have some properties of vector algebra: 

1. Vector addition is commutative   A+B = B+C. 

 

Let us recall some basic properties of vector Algebra: 

     1.  Vector Addition is Commutative A + B = B + A 

2. Vector addition is associative   (A+B)+C =A+(B+C) 

3. Existence of Identity or Zero Vector A+O =O+A =A. 

4. Existence of Inverse or Negative vector A –A =A +(-A) =O 

5. Scalar multiplication   m Ȃ = (m A) Ȃ, where Ȃ is the unit vector. 

6. Vector multiplication:     

(a) Scalar product or dot product   A . B = AB cos θ 

Here   we have four vectors A, B, C, D. 

We join the tip of A on the tail of B, then Tip of B to the tail of C, and so on, the resultant is given by the last vector 

as shown. 

 

                        So resultant vector addition R is given by         

                                          R = A+B+C+D 
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     where θ is the angle between A and B. 

(b) Vector product or cross product   A × B = AB sin θ n 

     where n is the unit vector perpendicular to the plane containing vectors A and B. 

7. Resolution of vector in rectangular coordinates: 

     Two-dimensional   A = Axi + Ayj, where i and j are unit vectors in x                      

and y directions. 

Three dimensional   A = Axi + Ayj + Azk , here k is unit vector in z – direction. 

 8.Triple product: 

                                (a)Scalar triple product A . ( B × C ) = B.(A ×C) =C .( A× B ) . 

                                (b) Vector triple product A × ( B × C ) = B(A .C) - C( A.B ) . 

4. Vector analysis 

Here we have some basic results for the vectors: 

 

 Del operator        =  
 

  
    

 

  
  

 

  
    . 

 

 Gradient           =
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 Divergence        = ( 
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 Curl           =              [

   
 

  

 

  

 

  

        

] 

 



Ch.1 Fundamentals of Dynamics 
 

Institute of life long learning Page 10 
 

 

                        = (
   

  
  

   

  
) i  + (

   

  
  

   

  
 )j  + (

   

  
 

   

  
 ) k 

 

 

*Some vector Identities: 

 

Product rules: 

               or, equivalently, grad (f g) = f grad g + g grad f  

 (   )  (   )  (   )     (    )      (     ) 

  (   )               or, equivalently, div(f v) = f div v + grad f . v 

 

     (  )                    or, equivalently, curl(f v) = f curl v + grad f X v 

 
    (     )      (      )    (     )  

 

   (     )   (   )   (   )  (   )  (   )  

  

 

Chain rules  

  ( ( ))    ( ( ))  ( )   

or, equivalently, grad f(g(x))=f'(g(x)) grad g(x) df(w(t))/dt = f’(w(t))w'(t)  

 

Integral identities:  

 Green's identities:  

 

                      

                    

 

 

 Gauss's divergence theorem:  
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 Stokes's theorem:  

 

                              

 

 Relationships among the common three-dimensional coordinate systems.  

 

o    Cartesian in spherical  

x= r sin cos  

y= r sin sin  

 z=r cos   

                                                      

o Cartesian in cylindrical  

x= s cos  

y= s sin  

      z=z 

 

                Spherical in Cartesian  

  r =(x2 + y2 +z2)1/2 

        cos =
 

(            )     

  

    tan  = y/x         

                                                  

 

                  Spherical in cylindrical 

r= (s2 + z2 )1/2 

cos  = z /(s2 + z2 )1/2  
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                   Cylindrical in Cartesian  

S = (x2 + y2)1/2  

 

tan   
 

 
      

z = z                                                                                                

 

                        Cylindrical in spherical  

s = r sin  

    

z= r cos   

    

5. Review of Newton’s laws of Motion 

 

Newton’s first law: “everybody wants to remain in its state of rest or in uniform motion in 

a straight line unless and until expelled by some external force”. 

The property of an object to remain in the state of rest or in uniform motion, when no 

external force acts on it is called as inertia and the frame of reference in which such state 

exist is called the inertial frame.  The first law defines force also qualitatively, it tells us 

what happens when it is absent.  
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Example of constant velocity motion. To play the movie click Mechanics with animations and 
film clips: Physclips. 

Credits:  Authored and Presented by Joe Wolfe 

Multimedia Design by George Hatsidimitris  Laboratories in Waves and Sound by John 

Smith 

 

Newton’s second law: The rate of change of linear momentum is directly proportional to 

the applied external force and is in the direction of the force”.  

 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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Example of constant acceleration motion. To play the movie click Mechanics with animations 
and film clips: Physclips. 

Credits:  Authored and Presented by Joe Wolfe 

Multimedia Design by George Hatsidimitris  Laboratories in Waves and Sound by John 

Smith 

This law defines force quantitatively; this is the most famous equation of physics used in all 

disciplines of physics. We can write it as 

                               

 

 

where the proportionality coefficient is assumed to be unity. 

Here the momentum p is defined as p=mv, where v is the velocity of the body. 

So                        F =m
  

  
 

From the second law, it follows that when external force is absent, the linear momentum 

mv constant, so the object will continue in the state of uniform motion. Now when v=0,the 

state of rest can be considered as the special case of state of uniform motion, so the first 

law is a special case of the second law. 

Newton’s third law:” To every action, there is an equal and opposite reaction.” 

The third law applies only to the two isolated particles exerting forces on each other 

assuming that all other forces due to all other particles are completely absent. The action –

reaction force between two particles acts along the line joining the two particles. Thus, 

                                           F1 = -F2  

F =
  

  
 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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Example of F = m a  .To play the movie click Mechanics with animations and film clips: Physclips. 

Credits:  Authored and Presented by Joe Wolfe   

Multimedia Design by George Hatsidimitris   

Laboratories in Waves and Sound by John Smith 

 

 

 

 

 

 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html


Ch.1 Fundamentals of Dynamics 
 

Institute of life long learning Page 16 
 

 

 

6. Summary 

 

 Vectors are the quantities, which have magnitude as well as direction and following 

certain rules. 

 

 Vector addition laws help us to find the ways to add two or more vectors. 

 

 Vector algebra deals with the commutative, associative, distributive properties. 

 

 Vector analysis deals with the differentiation and integration of vectors. 

 

 We define special operator del ( ), which help us to find the differentiation of 

vectors. 

 

 We define gradient, divergence and curl of a scalar & vector functions. 

 

 The gauss divergence theorem helps us to shift a volume integral with a surface 

integral. Similarly Stoke‘s theorem change a surface integral into line integral. 

Greens theorem is a special case of stroke’s theorem.  

 

 We can have various coordinate systems like Cartesian, cylindrical and spherical. 

 

 

 Mechanics is the study of motion of particles and the system of particles. 

 

 Dynamics is the study of motion of particles and their causes of motion. 

 

 

 The three laws of newton are the backbone of all problems solving in mechanics, in 

which the second law is the most famous and basic law, the other two laws are just 

derivable from it. 
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7. Exercise 

1. A ship travels a distance of 8km from a point O along a direction 300 East of North   up to 

A and then moves along the East for 2km up to B. Let OA=P, AB =Q. Draw the resultant 

displacement vector d of the ship and find: 1. The component of vectors P and Q. Express P 

and Q in term of unit vectors; 2. The components, magnitude and direction of d; 3. R in the 

term of the unit vectors where R=2P-1/2 Q and draw R.  

2. Given vectors a =2i + 3j +2k, b= 8i – 6k  and c =6j +3k , find the following: 

(1) a . b   ,          (2) a x b ,                (3) a. b x c ,                   (4) a x ( b x c) 

3. Given a scalar function φ = xy + z3, find the gradient of φ. 

4. Show that curl ( grad φ ) =0. 

5. Show that div ( curl A ) = 0. 

6. A particle is moving with a speed of 15m/s with respect to a train. If the train is moving 

with the speed of 110 km/hr in the same direction as that of the particle, then find the 

speed of the particle with respect to the ground.  

7. A Car speeds up to 40km/hr in 6seconds from the rest. A frame of reference attached 

with the car is an example of 

(1) Inertial Frame 

(2) Non-inertial frame 

(3) Nothing can be said 

(4) Straight line motion. 

 

8. a. Calculate the net force required to accelerate a 540-kg  car from rest to 120km/hr in 

20.0 seconds. 

    b. calculate the net force required to decelerate a 1080-kg truck from 60km/hr to rest  in 

10.0 seconds. 

 

9. A mass of 20 kg starting from rest accelerates upto 30m/s in 15seconds. After that it 

moves with a constant speed of 30m/s for the next 1 min. find the average force acting on 

the particle. 

10. What is the direction of the acceleration of an object that is slowing down while heading 

eastward? 

11. A ball is thrown with initial speed of 10m/s in the air vertically. Find the maximum 

height attained by the ball. 
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12.A circular motion is an example of 

(1) Uniformly accelerated motion. 

(2) Non-Unifromly accelerated motion. 

(3) Straight line motion 

(4) zero-accelerated motion. 

13. Is it possible to round a corner with constant velocity? Explain! 

 

Indicate whether each of the following statements is true or false: 

 

14. If an object is moving there must be nonzero net force acting on the object. 

 

15. An object has the same mass when on earth and when on the moon. 

 

16. An object has the same weight when on earth and when on the moon. 

 

17. The gravitational force between two protons is greater in size than the electrostatic 

force between the two protons. 

 

18. Angle is a vector quantity. 

 

Fill in the blanks: 

19. The rate of change in the velocity of a particle is ____________________ 

 

20. A body remains in the state of rest or uniform motion unless and until it is acted upon 

by some ______________________________. 

 

21. The dot product of two perpendicular vectors is ____________________. 

 

22. The Curl of the Gradient of a scalar is _____________________________. 

 

23.If a vector is divergence-less than it is also known as ___________________. 
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24. If the Curl of a vector is zero than the vector field is ________________. 

 

25. The dot product of Del operator with itself is known as _____________ Operator. 
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Ch.2. DYNAMICS OF A SYSTEM OF PARTICLES 

 

1. Reference frames and Inertial Frame of reference  

 

 

2. Galilean Transformation and Galilean Invariance   

 

 

3. Motion of a particle  

 

 

4. Motion of System of Particles 

 
 

5. Summary 

 

6. Exercise                                                                                             

 

 

 

 

 

 

 

 

 

 



Ch.2.Dynamics of System of Particles 
 

Institute of life long learning Page 2 
 

Objective 

 

After studying this chapter you will be able to understand: 

 

 The concept of frame of reference 

 The type of frame of reference-(a) Inertial and (b) non-inertial 
 The transformation rules for inertial frames called the Galilean 

transformation 
 The invariance of Galilean transformation with respect to laws of 

motion- called the Galilean Invariance 
 Descriptions of motion of particles in terms of displacement, velocity 

acceleration vectors 
 The concept of instantaneous and average displacement, vector and 

acceleration 
 The concept of system of mass particle and the description of the 

motion of the system of particles and its dynamics 
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 1. Reference frames and Inertial Frame of reference 

When we study motion of a body or collections of bodies we have to consider some 

stationary reference points or axes relative to which the body is moving. That stationary 

reference is known as the frame of reference. 

Consider for example motion of a car as shown in the figure below, now the observer sitting 

in the car observes the motion of car by looking at the motion of outside objects like trees, 

buildings, other peoples  etc., opposite to the direction of his motion. So here we can attach 

our Frame of reference to the outside tree or buildings etc.  

 

 

The motion of car relative to earth. To play the movie click Mechanics with animations and 
film clips: Physclips. 

Credits:  Authored and Presented by Joe Wolfe 

Multimedia Design by George Hatsidimitris   

Laboratories in Waves and Sound by John Smith 

 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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 The actual motion of an object is determined by observing the positional change of the 

object for a given time period. For this measurement we need a frame of reference. To 

understand the frame of reference, let us take the example of a moving bus. The change 

in the bus’s position in a given time period has one value if measured by an observer 

standing on the ground, has another value if the observer is on a moving bike and has zero 

value if the bike is moving with same speed and direction as that of the bus. And each of 

these values is equally correct from the point of view of each observer. So in general, the 

measured value of any physical quantity depends upon the reference frame of observer in 

which the observer is taking measurement. To specify a physical quantity, each 

observer may fix a zero of the time scale, an origin in space and an appropriate 

coordinate system. These collectively are known as a frame of reference. 

Now studying about frames of reference, we are going to study some special types of 

frames, which we call INERTIAL FRAMES. Those frames of references in which Newton’s 

laws of motion remains valid are known as THE INERTIAL FRAMES. 

These frames are either stationary or move with a constant velocity. So here acceleration of 

these frames is zero. A frame of reference, which is either stationary or moving with 

constant velocity with respect to an inertial frame, is itself an inertial frame of reference. 

When we have accelerated frames, we’ll see Newton’s laws of motion have to be modified; 

we call these frames as NON-INERTIAL FRAMES. 

Our normal motions just require inertial frames of reference. 

 

2. Galilean Transformations and Galilean Invariance   

 

   Fig 2.1 Frames of reference S and S’ in Uniform relative motion along the x-axis                                                                                                                                   

A physical phenomenon, which is observed simultaneously in two different frames of 

reference, has two different sets of coordinates corresponding to the two frames of 

references. So if we wish to establish some relations between the two sets of equations of 

motion of a particle or the system of particles we have to frame some rules or laws. These 
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set of rules are known as the transformation equations, since they enable the observations 

made in one frame to be transformed into those made in the other. 

Consider two frames of references S and S’ moving with relative velocity v, along x axis. 

The observers in the two frames will give two different coordinates to the same particles at 

point P which is observed by both. The coordinates are related to each other by 

transformation equations known as the Galilean transformations. Thus, 

                X’ = x –vt 

                Y’ = y  

                Z’ = z 

And           t’ = t 

Or in vector form:              R’ = r – vt. 

Here, we have assumed that at t=0, the coordinates S and S’ were coincident and the 

motion of S’ is along x direction with uniform velocity v.     

The inverse or the conjugate set of transformation equations (transformation from S’-

system to S-system) is 

                x = X’ +vt’ 

                y = Y’  

                z = Z’ 

And           t = t’. 

Or in vector form:               r = R’ + vt’ 

 

Transformation of distance or length: 

Let us consider the two frames S and S’ again. The distance between two points in these 

frames are given by 

S frame:  distance    = x2 –x1,    = y2 –y1,     = z2 –z1   

             And the length L between two points is given by 

                 L= [(x2 –x1)
2+ (y2 –y1)

2+ (z2 –z1)
2]1/2 

S’ frame: distance     = X’2 –X’1,     = Y’2 –Y’1,      = Z’2 –Z’1   

             And the length L’ between two points is given by 

                 L’= [(X’2 –X’1)
2+(Y’2 –Y’1)

2+ (Z’2 –Z’1)
2]1/2 

Now we know that the two frames are related with each other by Galilean transformation, or 

                X’ = x –vt 
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                Y’ = y  

                Z’ = z 

And           t’ = t 

 

So 

                = X’2 – X’1 =(x2 –vt) –(x1 –vt) =x2 –x1 =    

                = Y’2 –Y’1 = y2 –y1 =    

                      = Z’2 –Z’1 = z2 –z1 =    

Hence the distance between two points remains unchanged or invariant in the two 
frames. Similarly we can show that the length L is also invariant in the two frames, 
or  

                 L’= [(X’2 –X’1)
2+(Y’2 –Y’1)

2+ (Z’2 –Z’1)
2]1/2 

                   = [(x2 –x1)
2+ (y2 –y1)

2+ (z2 –z1)
2]1/2 

                            = L 

  Hence  

                     L’ = L. 

 

The transformation equations for the velocity: 

Now if we take first derivative of the transformation equations, we have 

VX’ = Vx – v   (since v is constant) 

VY’ = Vy  

VZ’=Vz 

Or in vector form:    V’ =V –v   

Or we have inverse transformation: V= V’ + v 

These equations are called as the Galilean law of velocity addition. 

These are the transformation equations for the velocity. Here we see that the velocity is not 

same in the two frames, so velocity is not invariant to Galilean transformations. 

 

Transformation equations for the acceleration: 

Now again taking differentiation of velocity transformation equations, we have 
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AX’ =Ax 

AY’=Ay 

AZ’=Az 

Since velocity v of S’ frame is constant hence its differentiation with respect to time will give 

zero. 

Or in vector form: A’=A. 

HENCE ACCELERATION IS INVARIANT UNDER GALILEAN TRANSFORMATION. 

 

So in the moving S’ frame, Newton’s second law is written as 

 

FX’=MAX’=MAx=Fx 

FY’=MAY’=MAy=Fy 

FZ’=MAZ’=MAz=Fz 

 

So force components are equal in both frames. So the Newton’s laws, which govern the 

behavior of the system, do not change when we make Galilean transformation. 

 

NEWTON’S LAW ARE THUS SAID TO REMAIN UNCHANGED OR INVARIANT UNDER 

GALILEAN TRANSFORMATION. 

 

It is obvious that the second law of Newton will have the same form in these two frames of 

reference since  

                           
    

   
    

   

     
 

Hence, the Newton’s second law of motion is said to be invariant with respect to the 

Galilean Transformations; this is called Galilean invariance.  

The behavior of all mechanical systems will thus be identical in all inertial frames in uniform 

translation (or at rest) with respect to each other. This implies that an observer at rest in a 

frame will not able to decide by performing any mechanical experiment, if his frame is at 

rest or in uniform linear motion. 

This equivalence of all inertial frames with regards to the laws of motion is known as 

Newtonian relativity. 
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3. Motion of a particle 

Nothing characterizes our daily lives more than motion itself. A game of cricket or 

football, the graceful movements of dancer, falling leaves, rising and setting sun are all 

examples of matter in motion. What is motion? We say that an object is moving if it 

occupies different positions at different interval of time. The study of motion deals with 

the questions: where? And when? 

 

 

 

 

 

       Figure -2.2 Instantaneous Positions of particle at various points in space 

Displacement, Velocity and Acceleration: We now consider the motion of a single 

particle in space (fig2.2). Let it be at the position A at the instant of time t and at B at 

the instant of time  t + ∆t.  As described in above paragraph the position of a particle 

in a particular frame of reference is given by a position vector drawn from the origin of 

the coordinate axes in that frame to the position of the particle. Let the position 

vectors of A and B with respect to origin O be r and r + ∆r, respectively. The 
displacement of the particle in the time ∆t, is given by 

 

    Vav    
  

  
 , 

Since ∆t is a scalar quantity the direction of Vav is the same as that of ∆r, Vav is the 

velocity at which the particle would have travelled distance AB in uniform and 
rectilinear motion during the interval of time ∆t. 
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Let us now represent the instantaneous velocities of the particle in passing through the 

points A and B of its path (fig2.2). We can see that the velocity at B is different from 

that at A, i.e. velocity is changing in magnitude and direction. Hence, the particle 

experiences an acceleration .just as we have defined average and instantaneous 
velocity, we can define average and instantaneous acceleration. 

If the velocity of the particle changes from v to v + ∆v within the time interval from t 
to t +∆t, then the average acceleration aav   during this interval of  time is given by  

aav  = 
  

  
  

Once again as ∆t is a scalar quantity the direction of aav is along ∆v. When the interval 

of time ∆t decreases, the ratio  
  

  
  approaches a limit. We define instantaneous 

acceleration of a particle at a given instant of time as, 

a =             = 
  

  
 

So, acceleration is the derivative of v w.r.t time, i.e. 

a = 
  

  
 = 

   

   
 

 

 

 

Figure Error! No text of specified style in document.1.3 
Instantaneous  velocities at point A and B. 
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and  ax =

   

  
   ,         ay = 

   

  
      ,        az  = 

   

  
 

4. Motion of System of Particles 

Till now we have studied the motion of a single particle, however, there are many 

situations in which we need to deal with the systems of many particles. For example, the 

Solar System comprising of the sun, the planets, their satellites, comets and asteroids is 

a many-body system. Gas filled in a cylinder is also a many–body system if its molecules 

are considered as the point masses. Objects such as exploding stars, an acrobat, a 

javelin thrown in air, a car, a ball can all be treated as many-body systems.  

 

 

 

 

             Figure 2.4 System of five particles 

Consider a system of five particles as shown in fig 2.4. We can represent the position of 

each of these particles by position vectors r1 ,r2 ,r3 , r4 , r5 , respectively as shown in the 

figure. Now we describe the various physical quantities of motion as we have done for 

the single particle motion. 
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Displacement: The individual displacement of each particle from the origin is given by 

their respective position vectors, i.e., r1 , r2 ,r3 , r4 , r5 ,respectively. Where we can have 

    ri = xi i +yi j+zi k  

 

and the magnitude of each displacement vector is given by 

ri = (xi
2 +yi

2 +zi
2)1/2 . 

 

Velocity: The individual velocity of each particle from the origin is represented as 

velocity vectors, i.e., v1, v2, v3, v4, v5, respectively; they are related with the position 

vectors as following: 

                                 
     

  
 ,    

     

  
,    

     

  
,    

     

  
,    

     

  
 

with each velocity vector given by 

vi   = vxi  i +vyi j +vzi k        with magnitude vi =(vxi
2 +vyi

2 +vzi
2)1/2  

 

Acceleration: Similarly we can define individual accelerations of the particles as 
following: 

                            
     

  
 ,    

     

  
,    

     

  
,    

     

  
,    

     

  
 

 

where each acceleration vector is given by 

 

ai =  axi i +ayi j +azi k 

and the magnitude of acceleration vector is given by 

ai = (axi +ayi + azi)
1/2 

so we can also have the relations: 

v = ∫             and     r = ∫    . 
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5. Summary 

 

 The frames of references are certain suitable coordinate system relative to which 

we measure the motion of particles and the system of particles. 

 

 The inertial frames of references are those frames where Newton’s laws of motion 

are applicable. 

 

 The non-inertial frames of references are the accelerated frames where Newton’s 

laws are not valid. 

 

 The Galilean transformations are the rules which provide us a way to calculate 

various physical quantities in different frames of references, where the second 

law of Newton remains invariant- Galilean invariance. 

 

 

 The motion of a single particle is defined by displacement, velocity and 

acceleration vectors. 

 

 

 The instantaneous velocity is the velocity of the particle at a particular time, 

while average velocity is the overall velocity average for an interval of time. 

 

 

 

 Similarly we can define instantaneous and average acceleration for a particle. 

 

 

 When we have a collection or system of particle, we have to find individual 

displacement, velocity and acceleration of each particle to describe the system 

completely. 
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6. Exercise 

1. The position vector of a particle is given by r = t i –t2 j + t3 k. Find the velocity and 

acceleration of the particle at t=5 seconds. 

2. Two particles are moving with the velocity vector v1 = 2xti – 2yt2j & v2 =-2xt2i-ytj, 
respectively. Find the instantaneous positions of the particles at t=2sec and x=y=3m. 

3. The acceleration of a particle is given by a = yzi- 2xzj-3xyk. Find the instantaneous 

velocity and position of the particle at 1second. 

4. A particle moves with velocity v=ti- t2 j, Find the average velocity if it moves for 10 

hours.  

5. Suppose a system of particles has 4 particles in it, each having mass of 2kg.If they 

are at the corner points of a square of side 2m and the whole system is moving with a 
velocity given by v=x2t i+ xytj ,Find the expression for  

(1) Position vector of each particle, 

(2) Velocity vector of each particle, 

(3) Acceleration vector of each particle. 

Fill in the blanks: 

6. The inertial frames are those, which move with a _______________. 

7. The non-inertial frames are ___________________. 

8. The Newton’s law are same in ___________________ frames. 

9. The Galilean transformations are variant for____________________. 

10. The Galilean invariance means invariance of ______________ in inertial frames. 

 

State whether the following statements are true or false: 

11. The Rotating frames are inertial frames of reference. 

12. The velocity is invariant in Galilean transformations. 

13. The system of particles does not obey all laws of newton. 
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14. The acceleration is invariant in inertial frames. 

15. All laws of Motion are same in all inertial frames. 

 

Choose the most appropriate option in the following questions: 

16. The inertial frames of reference are those in which we have 

(A) Zero velocity or Constant velocity. 

(B) Constant acceleration. 

(C) Varying acceleration. 

17. One example of non-inertial frame is 

(A) The constant velocity moving frame of reference. 

(B) The rotating frame with constant angular velocity. 

(C) The stationary frame of reference. 

18. The acceleration vector of a system of particles is given by 

(A) Taking average of all individual accelerations. 

(B) Taking vector sum of individual accelerations. 

(C) Taking root mean square of individual accelerations. 

19. A projectile has its maximum range given by RMAX. Prove that  

(a) The height reached in such case is (1/4)RMAX. 

(b) The time to reach the maximum height is (RMAX /2g )1/2. 

(c) The time of flight is (2RMAX /g )1/2 

20. Find the equation of motion of charged particle in a uniform electric field. 

21. Find the equation of motion of charged particle in a uniform magnetic field in z-
direction. 

22. Find the equation of motion of a charged particle in a mutually perpendicular electric 
and magnetic field. 
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23. Find the equation of motion of a massive charged particle in crossed EM fields and the 
gravitational field of earth. 

24. An inclined plane makes an angle   with the horizontal. A projectile is launched from 

the bottom A of the incline with speed vo in a direction making an angle β with the 
horizontal. Prove that the range R up the incline is given by 

                 R= (2vo
2 sin (β- ) cosβ)/(gcos2 ) 

 

25. For the above case prove that the maximum range up the incline is given by 

  Rmax = vo
2 /g (1+sin ). 

And is achieved when 

β=
 

 
 + 

 

 
  . 
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Objective 

 

After studying this chapter you will understand: 

 

 The Centre of mass concept and its importance for the system of 

particles 

 The concept of Linear momentum of a particle and  the system of  

particles and its physical importance 

 The Conservation of linear momentum and its application 

 The concept of Impulse 
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1. Centre of mass 

In chapter 2, we described the motion of system of particles. When we are dealing with the 

motion of a system of particles, it is always a matter of convenience to look at the problem 

of the system of particles as if there were only a single particle present. This can be 

achieved by the concept of Centre of mass. 

To get the idea of the Centre of mass, let us first watch following video clips: 

 

 

To play the movie, click Mechanics with animations and film clips: Physclips. 

Credits:  Authored and Presented by Joe Wolfe   

Multimedia Design by George Hatsidimitris   

Laboratories in Waves and Sound by John Smith 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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To play the movie, click Mechanics with animations and film clips: Physclips. 

Credits:  Authored and Presented by Joe Wolfe   

Multimedia Design by George Hatsidimitris   

Laboratories in Waves and Sound by John Smith 

 

 

 

To play the movie, click Mechanics with animations and film clips: Physclips. 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
http://www.animations.physics.unsw.edu.au/mechanics/index.html
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Credits:  Authored and Presented by Joe Wolfe   

Multimedia Design by George Hatsidimitris   

Laboratories in Waves and Sound by John Smith 

 

Now consider there are N particles in a system having masses m1, m2, m3, …mN, 

respectively. Now if the position vectors of each particle is given by R1, R2, R3, … RN 

respectively, then we define a imaginary point, called the Centre of mass, where we can 

assume that all the mass of the system is concentrated. The position vector of the center of 

mass RC.M, is given by 

 

 

 

  

 

 

  

This equation actually is a set of three equations for X- direction, Y-direction and for Z-

direction, respectively each for 3-D space, as 

  

XC.M = 
                     

             
 = ∑       

    

 

YC.M = 
                     

             
 = ∑       

 
    

 

ZC.M = 
                     

             
 = ∑       

 
    

 

When instead of discrete masses, we have a continuous system of mass, say an irregular 
shaped body of total mass M and mass density  , then we can first choose an infinitesimal 

mass element dm given by  

 

                    

 

RC.M   =
                      

           
     

   =∑       
 
   , where M is the 

total mass of the system of particles. 

 

http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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                                  dm =  dV , 

Where dV is infinitesimal Volume element 

and then when we take limit that this mass element reduces to zero, we can extend our 

summation to integral assuming that the number of particles goes to infinity so that the 

product Ndm is finite, hence 

 

RC.M   =      
                      

             
  =        ∑       

 
             

 

           RC.M = (1/M)∫     = (1/M) ∫      
 

Similarly, we can write for each component, 

 

 XC.M  = 
                     

             
 = ∑       

 
              XC.M =(1/M)∫      = (1/M) ∫       

 

   YC.M  = 
                     

             
 = ∑       

 
             YC.M  =(1/M) ∫      =(1/M)∫       

 

 

   ZC.M  = 
                     

             
 = ∑       

 
               ZC.M  =(1/M) ∫      =(1/M)∫      

 

2. Linear Momentum  
 

Suppose a particle of mass m is moving with velocity v, then we can define a physical 

quantity called the linear momentum, p, of the particle as the product of mass m of the 

particle and its velocity v. So mathematically, 

   

           p =m v  

 

or for a system of particles of masses m1, m2, m3,…. , moving with the velocities v1,v2,v3, 

… respectively, we define the total linear momentum P of the system of particles as the 

sum of all individual momenta of the particles. So mathematically, 
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           P = m1 v1+m2 v2+…+mNvN  , 

 

 Using summation notation 

 
                                       P = ∑     

 
     

 

 The momentum, like velocity, is a vector quantity. 

 

 It signifies the importance of mass with the motion. We see that momentum is proportional 

to mass. So having equal kinetic energy, the heavier mass should have large momentum. 

 

For example a man of 50 kg moving with 5m/s have kinetic energy 625J  and momentum 

250kgm/s ,while a bullet of 20g with a speed of 250m/s have kinetic energy of 625J ,but 

have smaller momentum 5kgm/s. 

 

The following movie shows the effect of mass in the momentum. 

 

 
to play the movie, click Mechanics with animations and film clips: Physclips. 

Credits:  Authored and Presented by Joe Wolfe   

Multimedia Design by George Hatsidimitris   

Laboratories in Waves and Sound by John Smith 

 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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3. Principle of Conservation of the Linear momentum 

The conservation principles are a helping tool for Physicists, they guarantee that a physical 

quantity can we assumed to be a constant of motion. Also the conserved quantity can be 

assumed to be associated with some kind of symmetry or invariance, you will study these 

concepts in your higher studies later, for the time being it is just informative to know that 

the conservation of linear momentum is associated with the translational invariance.  

Now we define the conservation of linear momentum as: 

-“For an isolated system of particles, when there is no external force acting on the system 

(although, there may be internal forces acting on the system), the linear momentum of the 

system of particles, is conserved or in other words total linear momentum of the system is 

constant”. 

The conditional clause of no external force is extremely important. If we are sitting in a 

chair, our momentum is zero, since our velocity is zero. 

But when we stand up and walk away, our momentum is not zero, since we have non-zero 

velocity. Momentum, in general, is not conserved. When we start to walk, you push against 

the Earth and it pushes you in the opposite direction. So there is external force acting on 

us. Momentum is only conserved if the total external force is zero. 

This principle demands that when external force F =0, the rate of change of linear 

momentum,  

                                   F =
  

  
 = 0     p = constant 

So we can have        

  Total Initial Momentum = Total Finial momentum 

or 

                     (k1 +k2 +k3+… +kN)  = (p1 + p2 +p3+…+pN) 

 

  Or 

                                           ∑   
 
    = ∑   

 
    

Where ki’ s are initial momentum and pi’s are the finial momentum of the particles. So we 

see above equation is a vector equation, it is a set of three equations in x, y and z direction, 

hence conservation principle is 
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           ∑    
 
    = ∑        

 
    = ∑    

 
    =∑        

 
      

 

           ∑    
 
    = ∑        

 
    = ∑    

 
    =∑        

 
      

  ∑    
 
    = ∑        

 
    = ∑    

 
    =∑        

 
      

Where ui’s are initial velocities and vi ‘ s are finial velocities of the particles. 

Example of the conservation of momentum is a bullet fired from a gun. Suppose the mass of 

bullet is m and it moves forward with a velocity v and let the mass of gun is M and it recoils 

with a velocity V. then 

Momentum of the bullet in the forward direction, pb =mv 

Momentum of the gun in backward direction, pg =-MV 

Now initial total momentum = 0, since both bullet and gun are in rest. 

And finial momentum of the bullet-gun system is =mv-MV 

Hence conservation of momentum demands that 

 

                                         mv- MV = 0 

 

                                          v = (M/m) V 

Another example of conservation of momentum is the rocket propagation. When the rocket 

is fired, then hot gases escape from the rear of the rocket. The momentum of those gases is 

equal to product of the total mass of the gases mg and their velocity vg i.e pg = -mg vg, the 

negative sign indicates that the gases are escaping backward. The conservation principle 

then demands that the rocket has to move forward with a momentum pR =MR VR, so that 

the total momentum remain conserved, since initially rocket was at rest so 

                                 -mg vg + MR VR   = 0 

 

 

 

 

 

The following multimedia shows some examples of conservation principles. The following 

example is included to remind us that momentum conservation can apply in only one or two 

dimensions, and therefore to only some vector component 
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To play the movie, click Mechanics with animations and film clips: Physclips. 

 

Credits:  Authored and Presented by Joe Wolfe   

Multimedia Design by George Hatsidimitris   

Laboratories in Waves and Sound by John Smith 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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Here, the external forces acting on the hammer-skateboard system are 

gravity, normal force and friction. During the collision, the force 

between them is much greater than their weight, so weight may be 

neglected. Notice that skateboard has hardly any vertical acceleration, 

so the total vertical force on it is close to zero. However, during the 

collision, there are obviously large vertical forces between skateboard 

and hammer because the hammer has a large vertical acceleration. So 

the external normal force acting during this collision cannot be 

neglected. So momentum is not conserved in the vertical direction. 

However, this doesn't necessarily prohibit momentum conservation in 

the horizontal direction. If the mass of the wheels of the skateboard is 

negligible, then momentum is conserved in the x direction. (In fact, 

the friction between the wheels and the bench must increase suddenly 

during the collision, 

because the wheels are rolling with different angular velocities before 

and after (see Wheels and rolling), and this change requires a torque 

that is supplied by the friction on the bench. However, provided that 

the mass wheels is small, this force will be small compared to that 

between hammer and skateboard.)  

You can check how well Σ px,initial = Σ px,final applies here: the mass 

of the hammer is 2.0 kg, that of the skateboard is 3.5 kg, so 

conservation of momentum in the x direction predicts that the velocity 

of the board after collision will be 2.0/(2.0+3.5) = 0.36 times the x 

component of the hammer's velocity between when it leaves my hand 

and when it hits the skateboard. The speed is proportional to the 

number of pixels travelled per frame. 

Credits:  Authored and Presented by Joe Wolfe   

Multimedia Design by George Hatsidimitris   

Laboratories in Waves and Sound by John Smith 
 

 

http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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4. Impulse 

Impulse is defined as the change in momentum of a particle or a system of particle. 

When we have momentum of a particle or a system of particle changed during the time 
interval  t then we have from the second law of newton 

                            p = F t     

                              =m(v- u) 

Where v and u are final and initial velocities of the particle. 

So we define impulse I as 

                                   I =   p = m(v- u) 

 

Now for an infinitesimal interval dt of time we have Impulse I defined as 

                                

                                    I = ∫    

 

5. Summary 

 

 The Centre of mass of a discrete  system of particles is defined as 
 

RC.M   =      
                      

             
  =        ∑       

 
    

where M is the total mass of the system of particles. 

 

 For a continuous  distribution of mass ,we have 

RC.M = (1/M)∫     

= (1/M) ∫     . 
 

 Linear Momentum is defined as the product of mass and velocity. It is a vector 

quantity. 

So linear momentum p =mv. 

 

 The principle of conservation of momentum says that total linear momentum is a 

conserved quantity for an isolated system. Hence 
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                      dp/dt =0   so p =constant 

 

Total initial momentum = Total finial momentum 

 

 Impulse is the change in the momentum for a small interval of time. It is given by 

 

I = m(v - u)= m v  

 

 

For infinitesimal time, Impulse is given by 

 

                    I = = ∫     

 

6. Exercise 

 

Q1. A soldier has a rifle that can fire bullets of mass 30g which can speed up to 1km/s. 

A 50kg tiger attack the soldier with a speed of15m/s. how many bullets must the soldier fire 

into the tiger in order to stop it in its path. 

 

Q2. Two boxes of mass m1 and m2 are connected together by a spring and rest on a 

frictionless table. The boxes are pulled away from each other and then released. Show that 

their kinetic energies are inversely proportional to their respective masses. 

 

Q3.Find the recoil speed of the500g gun when a shooter fires a 50g bullet with a muzzle 

speed of 200m/s. 

 

Q4.Find the impulse  experienced by the cricketer, when he catch a 20g boll coming towards 

him with a speed of 10m/s. 

 

Q5.Show that the law of conservation of linear momentum of a system is a direct 

consequence of the  translational  invariance of the potential energy of the system. 

 

Fill in the blanks: 
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Q6. The law of conservation of linear momentum holds when the external______________ 

is zero. 

Q7. The total linear momentum of an isolated system is ______________. 

Q8. The Centre of mass of a system of particle is _____________________. 

Q9. For an continuous mass system the elemental mass is given by ____________. 

Q10.  The change of momentum for a small time interval is known as ______________. 

 

State whether the following statements are true or false: 

Q11. The total linear momentum of the Universe is constant. 

Q12. The Centre of mass of a system of particle always lies inside the system. 

Q13. The Linear momentum is a vector quantity. 

Q14. The Momentum of a particle is the product of mass and acceleration of the particle. 

Q15. The kinetic energy and the linear momentum of a particle is always conserved. 

 

Choose the most appropriate option for the following questions: 

 

Q16.  The kinetic energy of two unequal masses is same, then  

(A) Their linear momentum is also same. 

(B) Lighter mass have larger momentum. 

(C) Heavier mass have larger momentum. 

Q17. The law of conservation of linear momentum is valid for 

(A) All types of systems. 

(B) Only for isolated systems. 

(C) The non-relativistic systems. 

Q18. The Centre of mass of a discrete mass system lies 

(A) Always at Centre of the system. 

(B) Always outside the system. 

(C) Always inside the system. 

Q19. The Centre of mass of a uniform regular shaped body is 

(A)  At its geometrical Centre. 

(B)  At any point inside the body. 

(C)  At any point outside the body. 

Q20. The Impulse is defined as 
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(A) The rate of change of linear momentum of the particle. 

(B) The change of linear momentum of the particle. 

(C) The change in velocity of the particle. 

 

 

Q21. The distance between the Centres of the two atoms of a dipolar molecule is 1*10-10 m. 

Locate the position of the Centre of mass of the system. 

 

Q22. The cage of parrot is suspended from a spring balance. How does the reading on the 

balance differ when the parrot flies about from that when it just sits quietly? 

 

Q23. Show that the Centre of mass of two bodies is on the line joining their Centre’s is at a 

point whose distance from each bodies is inversely proportional to the mass of that body. 

 

Q24. Find the position of C.M. of a Solid Cone. 

 

Q25. Find the C.M. of a Solid sphere. 
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After completion of this chapter you will understand: 

 

 The concept of variable mass system 
 The propagation of a Single stage Rocket 

 The basic theory of Multi-Stage Rocket propagation 

 The history of Indian space research programme 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Motion of rocket 
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We now consider the motion of a system when the mass varies with time. Examples of such 

systems are:  

 A drop of water falling through a cloud (will gain mass as it fall down)  

 A rocket (will lose its mass its flight as a result of burning of fuel). 

We will treat only non-relativistic velocities. 

A rocket fired from the earth will always be affected by the gravitational pull of the earth. 

Other heavenly bodies are at great distances from the rocket and the effect of such objects 

on the motion of rocket can be ignored. We also ignore the effect of rotation of earth and 

gravitational force of earth and assume free flight of the rocket. Let us consider the motion 

of rocket along the x direction and the motion is supposed to be constraint in the x direction 

only. The rocket is propelled by burning fuel. For the equation of motion, we find the change 

in momentum of the whole system in time interval   . 
 Let M be the mass of the rocket and v is its speed at time t. Then, in time interval   , the 

mass of the system is reduced by amount  M due to burning of the fuel and expulsion of an 

equal amount of mass of the gas. As a result of reduction in mass, the velocity of the 
system increase by amount  v. Let u be the velocity of the exhaust gases relative to the 

rocket as shown in figure below. 

 

 
 

 

 

 

Then, the law of conservation of momentum gives 

                                                
                                               Mv = (M -  M)(v+ v) -  M(u-v) 

Or 
                                               Mv = Mv +M v -  Mv-    M Δv- u  M + Mv 
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Now simplifying above equation and retaining only first-order infinitesimal quantities, we get 

                                                

                                                M v  = u  M 

  
Dividing throughout by    and taking the limit as    tends to zero, we get 

                                                M  ̇ = -u 
  

  
 

                                        Where  ̇ =
  

  
 . 

The negative sign shows that velocity increases as mass decreases. 

Integrating w.r.t. time, we get 

                                              ∫   
 

  
 = -u ∫     

  

  
 

 

Or                                     

                                              v = vo – u ln 
  

  
 

 

Where v and Mt are the velocity and mass of the system at the instant t and vo and Mo are 

those at t=0. 

Let us suppose that the fuel is burnt at constant rate 
  

  
 = β and it lasts for time T. If the 

mass of the vehicle is Mv and that of the fuel initially at t=0, is Mf, 

 then 

                          Mo = Mv + Mf  

The mass of the vehicle fuel system at any instant t can be written as 

Mt = M(t) = Mv + Mf (1- t/ T ) = Mo – Mf 
 

 
  ,for 0 t T 

 

And                       M(t)= Mo –Mf = Mv   for  t  T   

Substituting the value of Mt in velocity equation, we have 

                           v=
  

  
 = vo- u ln (1- 

   

   
 ) 

Integrating w.r.t time again, we get 

x= xo + vo t  - u ∫        
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the last integral can be obtained by parts, so we get 

∫        
   

   
    

 

 
 =(t-

   

  
)        

   

   
  – t 

Thus the distance covered by the rocket in time t is given by 

x= xo + vo t  - u [(t-
   

  
)        

   

   
  – t ] 

the rocket attains maximum velocity at t= T when all its fuel is burnt out. The maximum 

velocity is given by 

vmax =v(t=T)= vo –u ln (1 -
  

  
) 

       = vo + u ln(Mo/Mv) 

 

       = vo + u ln (1+Mf/Mv) 

So from above equation it is clear that the larger the value of ratio Mf/Mv, the greater will be 

maximum velocity attained by the rocket. 

Now we include the gravitational pull of earth, we have the equation of motion for the 

rocket as 

                                                M  ̇ = -u 
  

  
 – Mg 

Or                                    ̇   = - 
   

 
 –g   

Integrating w.r.t. time, we get 

                                                    v=vo - u ln(Mt/Mo) – gt 

assuming height xo=0 and velocity vo=0, initially, we have the expression for the height 

attained by the rocket at time t, as 

 

x= ut - 
 

 
 gt2  - (t – MoT /Mf) ln (1 – Mft / MoT) 

the rocket carries some load, called the payload. Payload may be a satellite to be placed in 

the orbit of the earth, or a bomb in the case of a missile. The payload and the body of the 

rocket have a fixed mass so the ratio Mf/Mv has a practical limit, hence the maximum speed 

of the rocket cannot be increased infinitely, so we have to make multistage rockets to attain 

high speeds. 
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To play the movie , click Mechanics with animations and film clips: Physclips. 

Credits:  Authored and Presented by Joe Wolfe   

Multimedia Design by George Hatsidimitris   

Laboratories in Waves and Sound by John Smith 

 

 

Multi –stage rockets (optional) 

Multi-stage rockets are a group of rockets combined either in sequence of one inside the 

other, or the rear part of one inside the nozzle of the other. As shown in figures below: 

 

 

 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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Credits: Creator: David Shoemaker 

Date: approx. 1945   

http://osulibrary.oregonstate.edu/specialcollections/coll/pauling/war/materials/chronolist.html#1945
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In multi-stage rockets, the first stage rocket is used first and when its fuel gets consumed, 

it gets detached. Then the second stage rocket takes its place and produces further 

acceleration, when its fuel also gets consumed, the third stage rocket comes into picture 

and take the position of second stage rocket.  This is how the velocity after each stage goes 

on increasing. The fuel consumption and the thrust for the first stage are about hundred 

times more than for the third stage and the fuel stock carried by it about 60 times that 

carried by the third stage. The following animation displays the working of a multi-stage 

rocket. 

 

Additional websites for information: 

Wikipedia: Multi Stage Rocket 

Atomic Rockets 

The Free Dictionary: Multi Stage Rockets 

http://en.wikipedia.org/wiki/Multistage-rocket
http://www.projectrho.com/public-html/rocket/multistage.php
http://www.thefreedictionary.com/multistage+rocket
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Science Daily: Multistage Rocket 

Think Quest: Multistage Rockets 

 

 

 

3. Brief history of Indian space mission (optional) 

As Russia (USSR) launch Sputnik in 1957, India too felt the importance of space science and 

technology for the socio-economic growth of the society. In 1960, India started its space 

programme with the establishment of Thumba Equatorial Rocket Launching Station near 

Thiruvananthapuram, for the investigation of ionosphere. It’s the efforts of Dr. Vikram 

Sarabhai, also known as the father of Indian space programme, who started space research 

programme in India. At beginning, Department of Atomic Energy, carried out space 

programme, but in June 1972 Department of Space (DOS) was established for the purpose. 

Now Indian Space Research Organization (ISRO) under DOS executes space programme 

through its establishments located at different places in India (Ahmedabad in Gujarat, 

Bangalore in Karnataka, Mahendragiri in Tamil Nadu, Sriharikota in Andhra Pradesh, 

Thiruvananthapuram in Kerala, etc.). We are the sixth nation in the world, which have the 

capability of designing, constructing and launching a satellite in an Earth orbit. 

Following are the mile stones in the history of Indian space research: 

(A) Indian satellites- these are the series of Indian satellites: 

1. Aryabhatta - The first Indian satellite was launched on April 19, 1975. 

2. Bhaskara - 1 

3. Rohini 

4. APPLE - It is the abbreviation of Ariane Passenger Pay Load Experiment. 

   APPLE was the first Indian communication satellite put in geo - stationary orbit. 

5. Bhaskara - 2 

6. INSAT - 1A, 1B, 1C, 1D, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, 3E 

   INSAT is the short for Indian National Satellite. Indian National Satellite System is a joint 

venture of Department of Space, Department of Telecommunications, Indian 

Meteorological Department and All India Radio and Doordarshan. 

7. SROSS - A, B, C and D (Stretched Rohini Satellite Series) 

8. IRS - 1A, 1B, 1C, 1D, P2, P3, P4, P5, P6 

IRS is  short for Indian Remote Sensing Satellite-Data from IRS is used for various 

applications like drought monitoring, flood damage assessment, flood risk zone mapping, 

urban planning, mineral prospecting, forest survey etc. 

http://www.sciencedaily.com/articles/m/multistage-rocket.htm
http://library.thinkquest.org/10568/design/multi.html
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9. METSAT (Kalpana - I) - METSAT is the first exclusive meteorological satellite. 

10. GSAT-1, GSAT-2 (Geo-stationary Satellites) 

 

(B) Indian Launch Vehicles (Rockets)-following are the Indian Launch Vehicles (LV): 

1. SLV - 3 - This was India’s first experimental Satellite Launch Vehicle. SLV - 3 was a 22 m 

long, four stage vehicle weighing 17 tons. All its stages used solid propellant. 

2. ASLV - Augmented Satellite Launch Vehicle. It was a five stage solid propellant vehicle, 

weighing about 40 tons and of about 23.8 m long. 

3. PSLV - The Polar Satellite Launch Vehicle has four stages using solid and liquid propellant 

systems alternately. It is 44.4 m tall weighing about 294 tons. 

4. GSLV - The Geosynchronous Satellite Launch Vehicle is a 49m tall, three-stage vehicle 

weighing about 414 tons capable of placing satellite of 1800 kg. 

 

(C) India’s first mission to moon: ISRO sent an unmanned spacecraft to moon in the year 

2008. The spacecraft is named as CHANDRAYAAN-1. This programme was for expanding 

scientific knowledge about the moon, upgrading India’s technological capability and 

providing challenging opportunities for planetary research for the younger generation. This 

journey to moon was supposed to take 5½ days. CHANDRAYAAN - 1 probed the moon by 

orbiting it at the lunar orbit of altitude 100 km. This mission to moon was carried by PSLV 

Rocket. 

 

For more information on Indian space programme please visit the website of ISRO 

www.isro.org 

http://www.textbooksonline.tn.nic.in/Books/11/Std11-Phys-EM-1.pdf  

 

 

 

 

 

 

 

 

 

 

http://www.isro.org/
http://www.textbooksonline.tn.nic.in/Books/11/Std11-Phys-EM-1.pdf
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4. Summary 

 

 The motion of rocket is an example of the variable mass system, the velocity at any 

time during the flight of the rocket is given by 

                           v=
  

  
 = vo- u ln (1- 

    

   
 ) 

 
 The maximum velocity is given by 

                             vmax  = vo + u ln (1+Mf/Mv) 

 

 The distance covered during this time is given by 

 

          x= xo + vo t  - u [(t-
   

  
)        

    

   
  – t ] 

 
 When we take the gravitational effect of earth , the distance is 

 

           x= ut - 
 

 
 gt2  - (t – MoT /Mf) ln (1 – Mft / MoT) 

 

 For high speed, we have to launch Multi-stage Rockets. 

 

 Dr. Vikram sarabai was the father of Indian space research programme. 

 

 

 The Indian space Mission is carried by ISRO. 

 

 The First Indian satellite – Aryabhatta was launched on April 19, 1975. 
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6. Exercise 

 

Q1. A rocket consumes 200 kg fuel per second, exhausting it with a speed of 20km/s. 

(a) What force is exerted on the rocket?  

(b) If its mass is reduced to 1/10th of its initial mass and taking its initial velocity as zero, 

what is the speed of the rocket at this time?(neglect gravitational effects, other effects) 

 

Q2. If the maximum possible exhaust velocity of a rocket be 3km/s , 

(a) Calculate the ratio, Mo/M for it if it is to achieve the escape velocity 11.2km/s. 

(b) How long will it take the rocket(starting from rest) to attain this velocity if its rate of 

change of mass in terms of its initial mass is 1/20th ? 

 

Q3. (a) a rocket is set for vertical firing has a weight of 40 kg and contain 400 kg of fuel. 

If it can have maximum exhaust velocity of 1km/s, what should be its minimum rate of fuel 

consumption (1) to just lift it off the launching pad,(2) to give it an acceleration of 10m/s? 

(b)What will be the speed of the rocket when the rate of fuel consumption is 

(1)5kg/s,(2)10kg/s,(3)20kg/s,(4)40kg/s ? 

 

 

Q4.  Show that a rocket has thrice the exhaust speed when Mo/M = e3 . 

 

Q5. A rocket of mass 30kg has 200 kg of fuel. The exhaust velocity of fuel is 2km/s. 

Calculate the maximum vertical speed gained by the rocket when the rate of fuel 

consumption of fuel is 3kg/s. Also calculate the maximum distance covered. 

 

 

 

 

 

Fill in the blanks: 

Q6. The propagation of rocket is based on______________ of Newton. 
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Q7. The total linear momentum of rocket remains _______________. 

 

Q8. The free fall of rain drops is another example of ________________ systems. 

 

Q9. The first Indian satellite was launched in the year ____________. 

 

Q10. The name of first Indian satellite was __________________ . 

 

State whether the following statements are true or false: 

 

Q11. The mass of a particle or the system of particle is a constant of motion always. 

 

Q12. The multi-stage Rocket can achieve higher speed as compared to single stage rockets. 

 

Q13. The first man send on the moon was American. 

 

Q14. The father of Indian space programme was Dr. Vikram sarabai. 

 

Q15. NASA is the Indian space research agency. 

 

 

 

 

 

Choose the most appropriate option for the following question: 

 

Q16. Which one of the following was the first Indian communication satellite put in geo - 

stationary orbit: 

(A) APPLE 
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(B) ARAYABHATTA 

(C) BHASKAR 

 

Q17. For high speed, we have to launch. 

(A)  A rocket with large amount of fuel 

(B)  Single-stage Rockets 

(C)  Multi-stage Rockets 

 

Q18. Which one of the following is the meteorological satellite? 

(A) SROSS 

(B) METSAT 

(C) GSAT 

 

 

Q19. The satellites which have same Time period of orbiting as that of Earth are known as 

(A) IRS 

(B) METSAT 

(C) GSAT 

 

Q20. The payload is defined as  

(A) The amount of money paid to design a rocket 

(B) The weight of fuel in the rocket 

(C) Payload may be a satellite to be placed in the orbit of the earth , or a bomb in the 

case of a missile. 

 

 

 

Q21. Show that the velocity at any time during the flight of the rocket is given by 

 

                           v=
  

  
 = vo- u ln (1- 

    

   
 ) 

 
 
 

Q22. Show that the distance covered any time during the flight is given by 
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          x= xo + vo t  - u [(t-
   

  
)        

    

   
  – t ] 

 

 

Q23. Show that when we take the gravitational effect of earth , the distance is 

 

           x= ut - 
 

 
 gt2  - (t – MoT /Mf) ln (1 – Mft / MoT) 

 

 

Q24. What are multi-stage rocket? Briefly explain their working principle. 

 

 

Q25. Write a short note on the History of Indian space mission. 
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Objectives 

 

In this chapter you will study: 

 

 Work and energy concept 

 The work-Energy theorem 
 What are conservative forces and non-conservative forces 

 Concept of Potential Energy 

 Force representation in term of gradient of the scalar potential 
 The Potential Energy versus distance diagram  

 Equilibrium and types of equilibrium 
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1. WORK AND ENERGY 

 

When a force is applied to a particle or the system of particle, the particle is displaced and 

an amount of work W is done on the particle. This work is done at the cost of energy stored 

in the particle or the system of particles. So we see that Energy is the capacity of doing 

work. Now we can define work mathematically as  

 

                          W= ∫   = ∫      

 

 

To play the movie click Mechanics with animations and film clips: Physclips. 

Credits:  Authored and Presented by Joe Wolfe 

Multimedia Design by George Hatsidimitris   

Laboratories in Waves and Sound by John Smith 

 

 
Where F is the applied force and ‘dr’ is the infinitesimal displacement of the particle and 

‘dW’ is the infinitesimal work done by the particle.  

So we see that work is dot product of force vector and displacement vector, 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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             W=   F. r = f r Cos  ,  

where f and r are the magnitudes of force and displacement vector and φ is the angle 

between the force and displacement vector. 

 

 

2. Work and Kinetic Energy Theorem 
 
The work and kinetic energy of a moving body are related to each other this relation 

is expressed in the form of a theorem as follows: 

 

“The change in the kinetic energy of a particle form initial position to finial position is 

equal to the work done by the force in displacing the particle from initial position to 

the finial position.” 

  

So, we can write 

                         W = Kf  -  Ki = 
 

 
 ( mVf 

2  mVi
2 ) 

Where Kf is the kinetic energy at the finial position, Ki is initial kinetic energy, Vf is 

the magnitude of final velocity and Vi is initial velocity of the particle of mass m. 

Let us prove this theorem. 

Suppose a particle of mass m is under an action of a constant and uniform force F 

and let dr be the displacement of the particle. Now  

 

                    F =   ma = m dV/dt  

also 
 

                    V=  dr/dt 

 

Now work done by the particle in moving from the initial position ri to finial position rf is 

given by  

W= ∫     
  

  
  

 

W = ∫      
  

  
 

 

W =∫   
  

  
   

  

  
  

 

W = ∫     
  

  

  

  
  

 

W =    ∫      
  

  
 

   

W = 
 

 
m(Vf

 2  - Vi 
2 ) 

W = Kf - Ki 
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W = ΔK, hence proved. 

 
 

 
3. Conservative and non-conservative force 

The conservative forces are those forces for which work done is independent of path taken, 

but it depends only on the initial and finial position. So, we can say that for a closed path 

the total work done is zero for A CONSERVATIVE FORCE, for the whole journey. Those 

forces, which are path dependent, are called NON-CONSERVATIVE FORCE. The examples of 

conservative forces are electrical forces, magnetic forces and gravitational forces. The 

example of non- conservative forces is dissipative forces like friction and viscous force in a 

fluid.  

Let us study only conservative force in this chapter. Now from the definition of work, as 

defined in earlier section in this chapter. 

We have, 

 

          W = ∫     
  
  

 =  ( (  )   (  ))   (  )   (  ), 

 

where V(ri) and V(rf) are some scalar functions which depend upon only at the position. As 

we shall shortly see that these scalars represent the change in potential energy hence the 

negative sign. So we see that for conservative forces the work done by the force or the line 

integral of the force is independent of the path taken and can be written as the difference of 

some scalar function which depends only the position of initial and finial points of the path. 

We define this scalar function as the potential, since it gives us the potential energy, U of 

the particle, so 

                                       U= V(r) 

 

We can have the equivalent condition for a conservative force, using the vector Identity   

                                   Curl ( grad  ) =     (  ) =0 , 

where   is any scalar function. So using this Identity, we have the necessary and sufficient 

condition for a conservative force 

    curl F =        = 0, 

so a force field is conservative if and only if its curl is zero. 

 

Now we know every central force can be expressed as  

F=f(r) ̂ 
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So  

          Curl F =        =        ( ) ̂   =f(r)      ̂ = 0 

 Since the Del operator and unit vector  ̂ are parallel vector, so their vector product 
is zero. Hence we can say that ALL CENTRAL FORCES ARE CONSERVATIVE FORCES. 

 

Now, from the identity 

                                   Curl ( grad  ) =     (  ) =0 , 

 We can define conservative force in term of gradient of any scalar function V, called 
potential, such that F = -   , so that        

  Curl F =        = Curl (grad V(r)) =     (  )=0 

 

4. Force as a gradient of energy 

 

Now the relation between conservative force F and the scalar potential V can be rewritten as                           

F = -  V     

Proof:          

Since potential is defined as the line integral of conservative force, so 

           V(r) = -∫      

Expressing F and r in terms of their components in three dimensions along the x, y, z axes 

as  

   F =FX i + FY j + Fz k         r= x i + y j + zk    and    dr = dx i+ dy j + dz k 

So that 

                 V(r)= -∫ (
 

 
                  ) (                  ) 

                      

                         = -∫ (
 

 
                     ) 

 

Which on partial differentiation with respect to x, y and z, gives 

     

        Fx =-
  

  
                Fy =-

  

  
             Fz =-
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So                            F =FX i + FY j + Fz k      

   

                              = - [
  

  
  

  

  
  

  

  
 ]   

           

                              =  - grad V 

Or                                F = -   

 

5. Potential energy 

 

We have already defined the potential energy of a particle or the system of particle as its 

capacity to do work by virtue of its position. It is measured by the amount of work done by 

the force to restore the particle from its present position to a fixed position and is denoted 

by symbol U or V(r). 

Now we define potential energy as the energy stored in the particle or the system of 

particles, due to some external force field in the space as, 

                                    U=W=-∫      

The following multimedia shows an example of the potential energy stored in water in a 

dam. This stored potential energy can be used to convert mechanical Energy into electrical 

energy, as shown. 

The following example has been taken from http://www.phys.unsw.edu.au/ 
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To play the movie click Mechanics with animations and film clips: Physclips. 

Credits:  Authored and Presented by Joe Wolfe 

Multimedia Design by George Hatsidimitris   

Laboratories in Waves and Sound by John Smith 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example: The hydroelectric dam problem 

The water level in a hydroelectric dam is 100 m above the height at which water 

comes out of the pipes. Assuming that the turbines and generators are 100% 

efficient, and neglecting viscosity and turbulence, calculate the flow of water 

required to produce 10 MW of power. The output pipes have a cross section of 5 

m2. 

Solution : This problem has the work-energy theorem, uses power, and requires a 

bit of thought. Let's do it. Let's consider what is happening in steady state for this 

system. 

Over a time dt, some water of mass dm exits the lower pipe at speed v. This water 

is delivered to the top of the dam at negligible speed. So the net effect is to take 

dm of stationary water at height h and deliver it at the bottom of the dam at 

height zero and speed v. 

Let the flow be dm/dt. The work done by the water, dW, is minus the energy 

increase of the water, so 

                    dW = − dE = − dK – dU 

 

= − (½dm.v2 − 0) − (0 − dm.gh) = dm(gh − ½v2). 

 

The power delivered is just P = dW/dt.  

 So 

 

 

                 

               P = (gh − ½v2)dm/dt 

 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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Of course the flow dm/dt depends on v. 

 Let's see how: In time dt, the water flows a distance vdt along the pipe. The cross 

section of the pipe is A, so the volume of water that has passed a given point is dV 

= A(vdt).  

Using the definition of density, 

 ρ =dm/dV, 

 we have 

dm/dt = ρdV/dt = ρA.(vdt)/dt = ρAv. 

Substituting in the equation above gives us 

P = ρAv(gh − ½v2) 

Or 

½v3 − ghv + P/ρA = 0. 

However you look at it, it's a cubic equation, which sounds like a messy solution. 

 However, let's think of what the terms mean. 

The first one came from the kinetic energy term. The second is the work done by 

gravity. The third is the work done on the turbines. Now, if I had designed this 

dam, I'd have wanted to convert as much gravitational potential energy as possible 

into work done on the turbines, so I'd make the pipes wide enough so that the 

kinetic energy lost by the water outflow would be negligible. Let's see if my guess 

is correct. 

If the first term is negligible, then we simply have hgv = P/ρA. 

 So v = P/ρghA = 2 m.s−1. So the first term would be 4 m3.s−3, 

the second would be − 2000 m3.s−3,  and the third would be 2000 m3.s−3,  .  

So yes, the guess was correct and, to the precision required of this problem, the 

answer is 

 v = 2 m.s−1. 
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Credits:  Authored and Presented by Joe Wolfe 

Multimedia Design by George Hatsidimitris   

Laboratories in Waves and Sound by John Smith 

 

6. Energy diagram 

Let us consider motion of a particle in an arbitrary potential field of a conservative force. For 

familiarity, we consider a central force field, like gravitational field. For this, we have 

equation of motion in one dimension for the particle as 

                           mar = m r’’= F(r)  +  L2 /mr3                                        

Where r’’ is the radial component of acceleration of the particle, m is the mass, F is the 

magnitude of the force field, L is the angular momentum of the particle. Here L2 /mr3 is 

known as centrifugal force. Now, we define effective potential energy Ve as 

                         Ve = -∫  ( )                               

Or 

                          Ve = V(r) + L2 /2mr2                                 

Here we have used 

                           F(r) = - dV(r) / dr                                      

Now the total energy E of the particle in the central force field is the sum of its kinetic 

energy and the effective potential energy Ve , Thus 

                           E = 
 

 
 mv2 + Ve = 

 

 
 m   2 + Ve                              

Since the system is conservative 

                           E = T + V = = 
 

 
 m  2 + Ve   = constant         

So 

                                        v=    = √  

 (    )

 
                 

 

http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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Let us suppose that the particle has total energy E as shown by the dotted line in figure 6.1, 

the arbitrary potential field is represented as continuous curve. So it is clear from the fig 

that at points r=r1 and r2, straight line E=constant intersect the potential energy curve. 

 

These points corresponds to E=Ve. Hence from the above equation, we have 

                                           v=   =0  

Such points, where the radial components of velocity is zero, are called as turning points. At 

all other points between r1 and r2 there exist certain differences between the values of E 

and Ve, this is represented by the ordinate (y-axis) between straight line E= constant and 

the curve representing V. This is clearly the kinetic energy of the particle. 

 

 

 

  Fig 5.1 Energy diagram for an arbitrary potential field. 

 

 

 

7. Stable and unstable equilibrium 
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Fig.5.2 Stable and Unstable Equilibrium  

Now from the figure 5.2 of the arbitrary potential field, for the whole range of r, we can 

have different regions, as follows: 

1. Region for which r  r1: In this region, the potential energy Ve is greater than the 

total energy E. hence the kinetic energy will be negative and the velocity will be 

imaginary. Hence this region is forbidden for the particle. 

 

 

 

2. Region for which r1≤r≤r2: In this region, the total energy is greater than the 

potential energy Ve. This region has r=r1 and r=r2 as the turning points. The motion 

of particle is therefore, oscillatory in the potential well and the particle will be 

confined to this region. The particle does not possess enough kinetic energy to cross 

the potential barriers at r1 and r2. The orbit of the particle may not be closed but  

a. Bounded in this region between two circles of radii r1 and r2. So here the 

total energy is sum of the kinetic energy and potential energy of the particle. 

b. At r1 and r2 we have kinetic energy zero and the potential energy maximum, 

and at rmin, potential energy is minimum and kinetic energy maximum, so the 

particle should be at least energy configuration at the point rmin, such point is 

called point of STABLE EQUILIBRIUM, where if we displace the particle 

from this position, it will try to come back to this position again ,that is why it 

is called stable configuration  for the particle. 

 
3. Region for which r2 r r3; In this region, we again have total energy less than the              

potential energy, so again kinetic energy is negative and velocity is imaginary. Also 

potential energy is maximum at the point rmax, as shown in the figure. So, if we 

displace the particle from this position it will never return to this position again, 

hence this position is of unstable energy configuration for the particle, hence we call 
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this point as the position of UNSTABLE EQUILIBRIUM. Again this region is 

forbidden for the particle. 

 

 

8. Summary 

 

 Energy is the capacity of doing work. Now we can define work mathematically as 

                 W= ∫   = ∫      

 

 The work and kinetic energy of a moving body are related to each other this relation 

is expressed in the form of a theorem as follows: 

  “The change in the kinetic energy of a particle form initial position to finial position   

is equal to the work done by the force in displacing the particle from initial position 

to the finial position.” 

 

 The conservative forces are those forces for which work done is independent of path 

taken, but it depends only on the initial and finial position. 

 

 

 

 For Conservative Force, we can define a scalar  potential V(r)  such that   

 

                 F = -  V        and     V(r) = -∫      

 

 STABLE EQUILIBRIUM: It is that position in the energy diagram of the potential field 

of a particle where if we displace the particle from this position ,it will try to come 

back to this position again . 

 

 

 UNSTABLE EQUILIBRIUM: If we displace the particle from this position it will never 

return to this position again, hence this position is of unstable energy configuration 

for the particle. 
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9. Exercise 

 

 

1. Calculate the kinetic energy of a ball of mass 30g moving with the speed of 10m/s. 

 

2. A car of mass 1000kg is moving with the constant speed of 60km/hr, when a man 600m 

ahead is seen by the driver. If the driver applies his brake so that the car just hit the man 

with the speed of 1m/s, find the deceleration, time taken and the kinetic energy loss of the 

car. 

 

3. A 50-kg skydiver moving at terminal speed falls 40 m in 1 second. What power is the 

skydiver expending on the air? Also find the kinetic energy. 

 

4. How many joules of work are done when a force of 10 N moves a book 5 m? 

 

5. Which requires more work–lifting a 150-kg bucket at a vertical distance of12 m or lifting 

a 105-kg bucket a vertical distance of24 m? 

 

6.If both buckets in the preceding question are lifted their respective distances in the same 

time, how does the power required for each compare? How about for the case where the 

lighter bucket is moved its distance in half the time? 

 

7. How many watts of power are expended when a force of 11 N moves a book 12 m in a 

time interval of 4 second? 

 

8. Does the force field F= yzi  -xz j+ xy k is conservative or non-conservative. 

 

9. A particle have position vector given by r= 2x i + 3y j +4z k calculate the work done by 

the particle, if the applied force is F= yzi  -xz j+ xy k. 

 

Fill in the blanks: 

 

10. The capacity to do work is called ____________________. 
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11.  Gravitational and Electric Forces are ______________________forces. 

 

12. The potential energy and Kinetic energy are Collectively known as the Total 

___________ Energy. 

 

13. The potential energy vs distance diagrams are known as ____________. 

 

14. The rate of change of the energy w.r.t. time is called ___________________. 

 

State whether the following statements are true or false 

 

15. Work is the vector product of force and displacement. 

 

16. The potential energy curves are known as energy diagrams. 

 

17. Conservative forces are path-dependent forces. 

 

18. Curl of a conservative force is always zero. 

 

19. The minimum of potential energy curve is known as the point of Stable equilibrium. 

 

20. Change in Kinetic energy of a system is equal to the work done by the system. 

 

Choose the most appropriate option for the following: 

 

21. The point of unstable equilibrium is the 

(A) Point of minima of the potential energy curve. 

(B) Point of maxima of the potential energy curve. 

(C) Point of zero slope of the potential energy curve. 
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22. The potential energy of gravitational field is given by 

(A) mgh 

(B) mv2 

(C) ma 

 

23. The power delivered by a system is  

(A) The rate of change of the linear momentum of the system. 

(B) The rate of change of the energy of the system. 

(C) The work done by the system. 

 

24. If the curl of a vector field A is zero, the vector field is represented as  

(A) The dot product of two scalars 

(B) The gradient of a scalar function 

(C) The vector product of two vector fields. 

 

25. If the total energy is negative for a system, then the motion of the system is 

(A) Unbounded 

(B) Bounded 

(C) Forbidden 
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Objectives 
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After studying this chapter you will be able to understand: 

 

 The elastic potential energy of an elastic medium 

 The relation between work and the potential energy 

 The work done by a conservative force 

 The work done by a non- conservative force 

 The law of conservation of energy for conservative forces 

 The law of conservation of energy for non- conservative forces 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Elastic potential energy 
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Consider a block of mass m attached with a spring which is fastened with a wall. The spring 

has energy stored in it due to the elastic properties of materials, as we slowly compress or 

extend the spring from its resting position. It is seen that if the surface on which the block 

is moving is frictionless ,the  block comes back to its position of rest with the same velocity 

or kinetic energy with which it started compressing or extending the spring, so we can do 

work without changing the kinetic energy. This work gets  ‘stored’ in the spring and we can 

get it back by extension or compression of the spring.  This stored energy is called the 

ELASTIC POTENTIAL ENERGY. 

According to Hooke's law, the linear restoring force exerted by a spring is directly 

proportional to the displacement measured from some fixed point and this force acts in the 
direction opposite to the direction of motion, so if    is the displacement then restoring 

force is given by 

                       

                              Frestoring = − k   , 

 
where    is the displacement from its equilibrium (rest) position, and k is called the spring 

constant for that particular spring. Since we are not accelerating anything, we have to apply 

a force F, 

 

                             F =-Frestoring 

 So the elastic potential energy stored in the spring, UELASTIC, is given by 

 

                             UELASTIC = ∫ dUrestoring = ∫ dW = ∫ F dx 

                             

                                = −∫ Frestoring dx 

                             
                                = ∫ k   dx, here assuming rest position at the origin, 

so     x-0=x,  and we set U=0 at origin , so 

  

                                             UELASTIC = (½)kx2 

 

  

 

 

We see that with this reference value at the origin, UELASTIC is always positive: 

With respect to the unstressed state, both stretching (x > 0) and compressing (x < 0) 

require work, so the potential energy is positive in each case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let us study this elastic energy with the help of following multimedia:  
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          To play the movie click Mechanics with animations and film clips: Physclips. 

In the film clip, the work done is get stored as the potential energy in the spring, the spring 

then does work on the mass, giving it kinetic energy. Biochemical energy in our arm get 

converted into potential energy in the spring and then to kinetic energy. 

 

 

 
 

 
To play the movie click Mechanics with animations and film clips: Physclips. 

Credits:  Authored and Presented by Joe Wolfe   

Multimedia Design by George Hatsidimitris  Laboratories in Waves and Sound by John 

Smith 

 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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2. Work and potential energy 

 
As we have earlier defined the potential energy is the energy stored at a position in a vector 

force field F=-  , where   is some scalar function, called the potential. We now, for 

simplicity and familiarity, take our vector force field as the gravitational force field 
(F=GMm/R2) and the corresponding scalar potential   = -GM/R, where G is Gravitational 

constant, M is the mass of the Earth, m is the mass of the particle, R is the radius of the 

earth. We now elaborate the concept by the following simple examples with multimedia. 

 

 

Suppose a man slowly lift a mass m in a gravitational force field. As shown in the following 

multimedia, the man lifts a mass up to a height h vertically in the gravitational field of 

earth. The weight mg of the mass here is due to the gravitational force of earth, hence 

F=W=mg, so the work done here is simply given by 

Work W =F.S = FScos0 = FS = mgh 

Now this work gets stored as the potential energy of the mass at the position at height h 

from the ground vertically, and as the mass is lowered back to the ground this stored 

potential energy can do work on the floor, as the stored potential energy get converted into 

the kinetic energy of the moving mass. 

 

 

 

 

 

To play the movie click Mechanics with animations and film clips: Physclips. 
 

Credits:  Authored and Presented by Joe Wolfe   

Multimedia Design by George Hatsidimitris  Laboratories in Waves and Sound by John 

Smith 

 

 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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In this example a single rope goes from the support, down to the man’s harness, round the 

pulley, back to the support, round another pulley and back to his hands. The pulleys turn 

easily, so the tension T in each section of the rope is the same. 

Levers, blocks and pulleys don't save the work, but they can reduce (or increase) the force, 

which can make a task more convenient and comfortable. 

Credits:  Authored and Presented by Joe Wolfe  Multimedia Design by George 

Hatsidimitris  Laboratories in Waves and Sound by John Smith 

 

 

 

http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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To play the movie click Mechanics with animations and film clips: Physclips. 

 

This is the example where a man moves on a stair. For most modest displacements, g is 

assumed to be uniform. The potential energy U is defined by an integral, and integrals 

require a constant of integration. For potential energy, this constant is the reference for the 

zero of potential energy. If we define Ugrav to be zero at h = 0, then we can write 

                  U  =∫ dUgrav = ∫ dW                                

                       = ∫ mg dy = mgΔy = mgΔh                                         

So            Ugrav  = mgh.  

                    where h is the vertical  displacement. 

As we know, not all forces but only conservative forces allow us to define a potential. 

Credits:  Authored and Presented by Joe Wolfe 

  Multimedia Design by George Hatsidimitris  Laboratories in Waves and Sound by John 

Smith 

 

 

 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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. 

 

The following multimedia shows the example of a magnetic work. 

 

 

 

To play the movie click Mechanics with animations and film clips: Physclips. 

Credits:  Authored and Presented by Joe Wolfe 

  Multimedia Design by George Hatsidimitris  Laboratories in Waves and Sound by John 

Smith 

 

 

 

 

 

 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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3. Work done by non-conservative forces 
 

We know that for conservative forces the work done Wcon is given by 

 
Wcon=   = -   . 

 

Now we study a system where the acting forces are conservative and non-conservative 

force as well (for example, motion on a surface have non-ignorable frictional force). Then 

the work done by the resultant force is the sum of the work done by conservative forces, 

Wcon, and the work done by non-conservative forces, Wnoncon, so we have 

 

Wtotal = Wcon+Wnoncon 

 

 

Now from work-energy theorem 

 

Wtotal=    

 

So 

 

Wtotal = Wcon+Wnoncon=   

 

Or   

 
Wnoncon=   +   =  , 

 

So the total mechanical energy (E=K+U) of the system is not constant but changes by the 

amount of work done on the system by the non-conservative forces. So here we see that 

when there is no non-conservative forces or there is no work done by the non-conservative 
forces, then only is the change in mechanical energy (  ) is zero, that is, the total 

mechanical energy is constant. 

When we consider non-conservative force such as the frictional forces, we have Wfrictional 
= E, and since friction is a dissipative force, it decreases the total mechanical energy, so 

there is a loss of energy. Where does this energy go?  

We know that this loss of energy appears in the form of heat. So we can say that frictional 
work is equivalent of heat generation. Hence Wfrictional =-H= E 

Or      +H=0 

Hence we can say that the sum of total energy remains constant. 

 
 

Let us study the conservative and non-conservative work with the help of a multimedia 

example: 

 

 

 

 

 

 

 

 



Ch.6 Work and Energy (II) 
 

Institute of life long learning Page 10 
 

 

 

 

 
 

Let us first consider the work done by a conservative force. Let's consider at the work done 

in moving a mass m in Earth’s gravitational field. We assume that here mass is moved with 

negligible acceleration, so we assume a=0, so the force exerted by the hand and the weight 

of the mass add to zero, so 

 

                        Fhand  +mg =0 

 or 

                       Fhand  + Fgrav  =0 

 

 Now the work done against gravity is  

 

                         W= ∫ Fhand.dr. 

 

As we lift up the mass, Fhand is upwards (positive) and r is also positive, so the work done 

by us is positive: 

 

                                                  W=∫ Fhand.dr > 0. 

 

As we lower the mass, Fhand is still upwards (positive) but now r is negative, so the work 

done by us is negative: 

 

                                                  W=∫ Fhand.dr < 0. 

 

Consequently, round a complete cycle that returns the mass to its starting point, 

 

                                                   W =∫ Fhand.dr =0. 

 

 Similarly, the work done by gravity around the cycle is zero, (because Fgrav = −Fhand).  

 

So the gravitational force is a conservative force. 

To play the movie click Mechanics with animations and film clips: Physclips. 
Credits:  Authored and Presented by Joe Wolfe 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
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Multimedia Design by George Hatsidimitris  Laboratories in Waves and Sound by John 

Smith 

 

 

 

 

If the work done around a closed loop is not zero, then the forces are non-conservative 

forces. Now we study the non-conservative forces. One example of them is frictional force. 

We do our earlier experiment of moving a mass on a frictional surface. Let's assume again 

that we do this so slowly that the mass is in mechanical equilibrium, so we have 

 

                                              Fhand  +Ffriction  =0 

 

 Moving to the right, we apply a force to the right and the object moves to the right: 

 Fhand and dr are both positive: we do positive work and friction does negative work. 

 Moving to the left, we apply a force to the left and the object moves to the left: 

 Fhand and dr are both positive: we do positive work and friction does negative work. 

 

So, around a closed loop, the work done against friction is greater than zero, so friction is a   

non-conservative force. 

 

 
To play the movie click Mechanics with animations and film clips: Physclips. 

Credits:  Authored and Presented by Joe Wolfe 

http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
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Multimedia Design by George Hatsidimitris  Laboratories in Waves and Sound by John 

Smith 
 

4. Law of conservation of energy 
 

The work energy theorem state that: “The change in the kinetic energy of a particle form 

initial position to finial position is equal to the work done by the force in displacing the 

particle from initial position to the finial position.” 

  

 So, we can write 

 

                         Wab = Kf  -  Ki = 
 

 
 ( mVf 

2    -  mVi
2 )= ΔK=Kb – Ka, 

where the particle is displaced from position ‘a’ to the position ‘b’. 

 

Now according to the definition of the potential energy, it is given by: 

                                  

                                 U=Wab=-∫      = Ua - Ub 

So we have from the above two relations  

Wab = Kb – Ka = Ua - Ub 

Or Ua  + Ka =Ub +Kb = E = constant (total mechanical energy) 

So the above relation can be read as: 

“The sum of kinetic and potential energy (called the total mechanical energy) of a particle, 

under a conservative force field, remains constant.” 

This statement is known as THE LAW OF CONSERVATION OF ENERGY. 

 Now we study this law further with the help of a multimedia example. 

 

 

We now study the cases where all of the forces that do the work ΔW are conservative 

forces: 

 

So, the work done by those forces is minus one times the work done against them, in other 

words it is −ΔU.  

So, if the only forces that act are conservative forces, then ΔU + ΔK = 0. 

Let us define the mechanical energy E by E  U + K. 

So, if the only forces that act are conservative forces, mechanical energy is conserved.  

 

Credits:  Authored and Presented by Joe Wolfe 

Multimedia Design by George Hatsidimitris  Laboratories in Waves and Sound by John 

Smith 

 

 

http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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Kinetic and potential energy in the pendulum: 
 

 
 

To play the movie click Mechanics with animations and film clips: Physclips. 

This video clip shows an example of the exchange of kinetic and potential energy in a 

Pendulum. The kinetic energy K is shown in red: as a function of x on the graph, and as a 

Histogram that varies with time. Note that the K goes to zero at the extremes of the 

motion. The potential energy U is shown in purple. It has maxima at the extremes of the 

motion, when the mass is highest.  Because the zero of potential energy is arbitrary, so is 

the zero of the total mechanical energy E = U + K. Here, E (shown in white) is constant. 

 

Credits:  Authored and Presented by Joe Wolfe 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
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Conservation of mechanical energy:  

 

We have seen that, if the only forces present are conservative, then mechanical energy is 

conserved. However, we can go further. Provided that non-conservative forces do no work, 

then the increase ΔK in the kinetic energy of a body is still the work done by the 

conservative forces, which is −ΔU.  

So we can conclude that if non-conservative forces do no work then mechanical energy (E  

U + K) is conserved. 

This statement can be written in several ways, of which here are two: 

 

If non-conservative forces do no work, ΔU + ΔK = 0 or 

 

 U i+ Ki = Uf + Kf , 

 

where i and f mean initial and final. 

 

Credits:  Authored and Presented by Joe Wolfe 

Multimedia Design by George Hatsidimitris  Laboratories in Waves and Sound by John 

Smith 

 

 

 

 

 

Non-conservative forces: 

 

If the forces acting are non-conservative and they also do work then the above law of 

conservation of mechanical energy does not hold good as we shall see in the following 

examples, but we can surely say that the law of conservation of the total energy 

(comprising of the mechanical energy, heat, electrical energy etc.) always remains 

conserved whether the forces are conservative or non-conservative, the law of conservation 

of the total energy is one of the valid laws known till date. 

 

Let us now see whether the energy is conserved even if a non-conservative force like 

friction is acting on a particle. We know that frictional force is path dependent, the longer 

the path traversed between two given points, the greater the work done by the frictional 

force. So unlike the conservative force, work done in moving a particle from initial position 

to finial position is not equal to the reverse path and hence total work done along the 

forward and reverse path is non-zero. In fact there is a loss of kinetic energy in either way. 

Thus, if we have both conservative and non-conservative forces acting on a particle and if 

work done by the two forces be Wconservative and Wnon-conservative respectively, and ΔK be the 

loss in kinetic energy, we have from the work-energy theorem 

http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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                                     Wconservative  + Wnon-conservative =  ΔK 

 

Now for conservative force, we have 

 

                               Wconservative  = - ΔU 

 

 

 

So we have 

                              

                              Wnon-conservative  = ΔK + ΔU = ΔE 

 

Thus the change in total energy of the particle is no longer zero, as the case for 

conservative force, but equal to the work done by the non-conservative force. 

If the no-conservative force is frictional force, the work done by it appears in the form of 

heat, H, so we have                            

                            Wnon-conservative  = -H 

Therefore 

                          

                                 H = -ΔE   where E is the total mechanical energy of the particle 

 

                        Or       

                                 H+ΔE = 0 

 

So the change in the total energy of the particle is zero or its total energy remains 

conserved. 

 So we can say that without exception the total energy is conserved.  

 

 

Hence the general law of conservation of energy holds good in the case of 

conservative and non-conservative forces. 

 

 

Now we study a multimedia example, called the loop the loop problem, where we can apply 

the law of conservation of the energy.                                   

 

 

 
Loop the loop.  

  

To play the movie click Mechanics with animations and film clips: Physclips. 

Credits:  Authored and Presented by Joe Wolfe 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
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This is a classic problem. A small toy car runs on wheels that turn and are assumed 

to turn freely and whose mass is negligible, so we can treat it as a particle. From 

how high must we release it so that it will loop the loop, remaining in contact with 

the track all the way around? 

If the car retains contact with the track then, at the top of the loop, which is circular, 

the centripetal acceleration will be downwards and its magnitude will be v2/r. 

The forces providing this acceleration are its weight mg (acting down) and the 

normal force N from the track, also acting down at this point. 

So, if N > 0, we require v2/r > g, or, for the critical condition at which it just loses 

contact, we require 

 

                        vcrit 
2
 /r = g  

or 

                        vcrit 
2 = rg 

 

We can do this problem using the conservation of mechanical energy. 

 

Uinitial + Kinitial = Ufinal + Kfinal 

 

Choosing the bottom of the track as the zero for U, we could write, 

 

mghinitial + 0 = mg.(2r) + ½mvfinal 
2 

 

and, if vfinal = vcrit = √(rg) 

 

so      mghinitial = 2mgr + ½mgr 

 

So the critical height hcritical is 5r/2 above the bottom of the track 

 

Credits:  Authored and Presented by Joe Wolfe 

Multimedia Design by George Hatsidimitris  Laboratories in Waves and Sound by 

John Smith 

 

 

 

 
 

 

 

http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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6. Summary 

 

 Elastic potential energy of a spring is given by   UELASTIC = ½kx2. 

 

 Gravitational potential energy is   Ugrav = mgh. 

 

 Friction and viscous forces are examples of non- conservative forces. 

 

 For conservative forces, the total mechanical energy is conserved, i.e. E= K +U. 

 

 Change in total energy for a conservative force is zero, ΔE=0 

 

Hence Wconservative =-ΔU. 

 

 Change in total energy for a non-conservative force is nonzero, but ΔE=Wnonconservative. 

 

 General Law of Conservation of energy says that total energy of the universe remain 

conserved. 

 

 

 

 

 

 



Ch.6 Work and Energy (II) 
 

Institute of life long learning Page 18 
 

 

 

 

 

 

8. Exercise 

 

Q1 A car is lifted a certain distance in a service station and therefore has potential energy 

relative to the ground. If it were lifted twice as high, how much potential energy would it 

have? 

 

Q2. Two cars are lifted to the same elevation in a service station. If one car is thrice as 

heavy as the other car, how do their potential energies related? 

 

Q3. How many joules of potential energy does a 2-kg box gain when it is raised to 14 m? 

What is the potential energy when it is elevated to 18 m? 

 

Q4. How many joules of kinetic energy does a 2-kg block have when it is thrown across a 

room at a speed of 12 m/s? 

 

Q5. A moving car has some kinetic energy. If it speed is increased until it is moving four 

times as fast as earlier, how much kinetic energy does it have changed? 

 

Q6. Compared to some original speed, how much work must the brakes of a car supply to 

stop a three times- as-fast car?  How will the stopping distance compare? 

 

Q7. (a) How much work do you do when you push a box horizontally with 10 N across a 20-

m on a floor?  

(b) If the force of friction between the box and the floor is a steady 7 N, how much KE is 

gained by the box after sliding 10 m? 

(c) How much of the work you do converts to heat? 

 

Q8. How does speed affect the friction between a road and a skidding tire of a car ? 
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Q9. What will be the kinetic energy of a sliding ball on a curved plank when it undergoes a 

10-kJ decrease in potential energy? 

 

Q10. A mango hanging from a tree has potential energy because of its height. If it falls 

down where do this energy goes just before it hits the ground?  

 

Fill in the blanks: 

Q11. The energy stored in an elastic spring is called _______________________. 

 

Q12. The gravitational potential energy is given by ____________________. 

 

Q13. The restoring force in an elastic spring is a _______________ force. 

 

Q14. The viscous force in a fluid is an example of ________________ force. 

 

Q15. The total mechanical energy is sum of the kinetic energy and the __________. 

 

State whether the following statements are true or false: 

 

Q16. All Central forces are conservative forces. 

 

Q17. The total mechanical energy remains conserved only for the conservative forces. 

 

Q18. We can always associate a scalar function with any force field. 

 

Q19. Work done is always path dependent for the conservative forces. 

 

Q20. The general law of conservation of energy holds good in the case of conservative and 

non-conservative forces. 
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Choose the most appropriate option for the following: 

Q21. The elastic potential energy of a spring is given by 

(A) U=mgh 

(B) U= ½ mV2  

(C) U= ½ Kx2. 

 

Q22. The work done by a charge particle in magnetic field is given by 

(A) W= mgh 

(B) W= qvBx 

(C) W=0. 

(D)  

Q23. The condition for a conservative force F is 

(A)        

(B)         

(C)             

 

 

Q24. The law of conservation of total energy holds 

(A) Only for conservative forces 

(B) Only for non-conservative forces 

(C) For both conservative and non-conservative forces. 

 

Q25. For a simple pendulum  

(A) The kinetic energy is maximum at the extreme positions and the potential energy is 

maximum at the mean position. 

(B) The potential energy is maximum at the extreme positions and the kinetic energy is 

maximum at the mean position. 

(C) The total energy is not constant. 
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Objective  
 
After studying this chapter you will understand: 

 
 The  phenomena of  collision and types of collision 

 
 How the law of conservation of linear momentum is applied for 

the collision problem 

 
 The Inelastic collision and its application and calculation of the 

loss of kinetic energy 
 

 The one –dimensional elastic collision in lab frame 
 

 The two- dimensional elastic collision in the lab frame and 
special cases of collision of two particles 

 
 The motion of the Centre of mass 

 
 The calculation of linear momentum of Centre of mass 

 
 The two body problem and how can the two body problem is 

reducible to an equivalent one body problem 
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1. Collision 

 

Collision is the phenomena in which two particles exchange their momentum and kinetic 

energy. When there is the loss of kinetic energy during the collision, we call this type of 

collision as inelastic collision. When the kinetic energy remains conserved in the collision, we 

call this type of collision as elastic collision. The linear momentum always remains 

conserved in inelastic as well as elastic collisions. 

Let us study collision by some example 

 

 

 

 

 

To play the movie, click Mechanics with animations and film clips: Physclips. 

Credits:  Authored and Presented by Joe Wolfe   

Multimedia Design by George Hatsidimitris   

Laboratories in Waves and Sound by John Smith 

 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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           To play the movie, click Mechanics with animations and film clips: Physclips. 

Credits:  Authored and Presented by Joe Wolfe   

Multimedia Design by George Hatsidimitris   

Laboratories in Waves and Sound by John Smith 

 

 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html


Collision and Centre of Mass System 

Institute  of Life Long Learning, University of Delhi Page 5 
 

 

 

        To play the movie, click Mechanics with animations and film clips: Physclips. 

Credits:  Authored and Presented by Joe Wolfe   

Multimedia Design by George Hatsidimitris   

Laboratories in Waves and Sound by John Smith 

 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
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To play the movie, click Mechanics with animations and film clips: Physclips. 

Credits:  Authored and Presented by Joe Wolfe   

Multimedia Design by George Hatsidimitris   

Laboratories in Waves and Sound by John Smith 

 

2. Inelastic Collisions 

Now we study inelastic collision in detail. As we have stated earlier in this type of collision 

only linear momentum is conserved and the kinetic energy is not conserved. 

The example of such type of collision is when a bullet is fired on a wall or wooden block and 

it gets embedded in the block. Suppose the mass of bullet is m and mass of wooden block is 

M. Let us suppose that initially wooden block is at rest and the bullet is fired with a muzzle 

velocity v. After piercing and embedding in the block the bullet-wooden block system move 

with a common velocity V. Let as assume also that motion here is one-dimensional. 

Then applying principle of conservation of linear momentum 

http://www.animations.physics.unsw.edu.au/mechanics/index.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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Total initial momentum =Total finial momentum 

So                 mv + M (0)  = (m + M)V 

  

 So the common velocity is        V= (m/(m+M))v 

 

We can also calculate the loss of kinetic energy as follows: 

The initial kinetic energy Ki = (½) m v2 

The finial kinetic energy Kf = (½)(m+M)V2 

So the loss of kinetic energy    = Kf – Ki = (½)[(m+M)V2 –mv2] 

Also                                 V= (m/(m+M))v 

So  

     = Kf – Ki  = (½)[(m+M)( m/(m+M))2 v2 –mv2 ] 

                   = (½)[(m2/(m+M)) v2 –mv2] 

                  = (1/2) [(m2 v2 - m2 v2 - mMv2)/(m+M)] 

                =-(½)(mM/(m+M))v2 . 

   Here negative sign shows that change is negative, so there is the loss of kinetic 

energy during inelastic collision. 

We can also calculate fraction change in kinetic energy as 

We know fractional change in kinetic energy = change in kinetic energy/initial kinetic 

energy 

 

So               fractional loss =     Ki=( Kf – Ki  )/ Ki                   

  

                                        = (½)[(mM/(m+M))v2] / (½) m v2  

 

So 

                        Fractional loss in K.E = 
 

   
  

Hence we see that fractional loss of kinetic energy in inelastic collision of two masses 

is the ratio of the mass of the stationary body to their combined mass. 

For example in our bullet wooden block system if  
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M=100g      m=10g      v=200m/s   

Then  

          V = (10/110)X 200 m/s = 18.18 m/s 

Initial kinetic energy = (1/2) X10X10-3 X2002 =200J 

Finial kinetic energy =(1/2) X 110 X 10-3 X 18.182 =18.178 J 

And 

Loss in kinetic energy    =-(½)(mM/(m+M))v2 =-(1/2) (1000X10-6/110X10-3)X40000  

                                   =-181818.18X10-3 J =-181.82 J 

 

And the fractional loss in K.E = loss / initial energy = 181.82/ 200=0.9091. 

Also from the formula of the fraction loss, we have 

Fractional loss    = 
 

   
  = 100/110 =0.90909. 

The two answer match as they should be. 

 

3. Elastic collision  

Now we study the elastic collision of two particles. As we know in this type of 

collision both, the linear momentum and total kinetic energy remains conserved. 

Let us first study one-dimensional elastic collision and later we move on to two-

dimensional case. 

Let us consider collision of two particles of mass m and M let us also assume that the 

heavy mass is initially at rest for simplicity. 

Now u be the initial velocity of mass m and v and V be the finial velocities of mass m 

and M after the collision respectively, then the conservation of linear momentum demands 

 

mu + M(0) = mv + MV 

or  mu = mv + MV                        (1) 

so  

      V = m(u-v)/ M 

Also conservation of kinetic energy demands 

(½)mu2 = (½)[mv2 + MV2] 
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So 

mu2 =[mv2 + MV2]                       (2) 

Now multiplying eq (2) by m, we have 

m2u2 = m2v2 + mMV2                    (3) 

And taking square of eq (1), we have 

m2u2 = m2v2 + M2V2 + 2mMv.V       (4) 

Now comparing eq. (3) and eq. (4), we have 

mMV2 =  M2V2 + 2mMv.V    

or  

V2 (mM – M2) = 2mMv.V 

Or 

V=[2m/(m-M)] v                           (5) 

Now we write expression for v and V in terms of u 

From eq. (1), we have 

v = u-(M/m)V 

so from eq. (5)   

v=  u – (M/m)[ 2m/(m-M)] v 

v[1 + (2M)/(m-M)]= u 

or 

v= [(m-M)/(m+M)] u                            (6) 

also  from eq. (5) and (6), we have 

V=[2m/(m-M)] v =[2m/(m-M)][(m-M)/(m+M)] u      

So  

V =[2m/(m+M)]u                                  (7) 

 

So we have finial velocities of the two particles given by 

 

                                                                      

 

v= [(m-M)/ (m+M)] u 
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Now we study some special cases: 

(1) When m=M, we have v= 0 and V=u, so the particle exchange their velocities 

with each other after the collision. 

 

(2) When m  M, we have v   - u and V= 0, so the lighter particle just bounce back 

and the heavier particle remains stationary. 

 

 

(3) When m  M, the moving particle is much heavier then v   u and V   2u, so the 

lighter particle moves twice the speed of heavier particle and the heavier particle 

continues its motion with the same speed. 

 

Now we consider the motion of both particles before the collision in one-dimension (hence 

the vector sign is being omitted on the velocity). So we have the initial velocities as u and U 

of masses m and M respectively. Also let v and V are their finial velocities after the collision. 

Then conservation of linear momentum equation: 

 

mu + MU = mv + MV                                   (1) 

or 

m(u – v) = M(V-U)                                       (2) 

and conservation of kinetic energy demands 

(½) mu2 + (½) MU2 = (½)mv2 + (½)MV2        (3) 

Or  

 mu2 +  MU2 = mv2 + MV2                              (4) 

or 

m(u2 –v2) = M(V2 –U2)                                   (5) 

now dividing eq. (5) by eq. (2), we get 

u+v = U+V     

V = [2m /(m+M) ] u 
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or 

u-U = V-v                                                 (6) 

so the eq.(6) shows that in one dimensional elastic collision, the relative  velocity with which 

the two particles approach each other before the collision is same as the relative velocity 

with which the two particles move away from each other after the collision. 

Now we wish to express final velocities of the two particles in terms of their initial velocities. 

For this we write eq. (6) as 

V= v+u-U                        (7) 

And  

v= V+U – u                       (8)   

And using (7) and  (8) in (2), so we have 

v=[(m - M)/(m+M)]u + [2M/(m+M)]U 

V= [2m/(m+M)]u +[(M - m)/(m+M)]U 

Now we have special cases: 

(1)  When m=M, v= U and V=u, as expected the particle exchanges their speeds. 
(2) When m  M, so v= -u + 2U and V= U. 

(3) When fast moving particle is heavier or m  M so v= u and V=2u- U. 

 

We will study 2 and 3 dim collision in the next chapter when we study them in centre of 

mass frame of reference, since in the lab frame these problems are hard to solve. 

 

 
 
 

 

 

4.Motion of Centre of mass. 

Now having understood the concept of Centre of mass, we study the motion of the Centre of 

mass, for this we assume a system of N–particles so that their inter-particle distance 

remains constant as the system moves. Also let M be the total mass of the system and it 

remains constant during the motion. So according to the definition of the Centre of mass, 

we have 

RC.M   = 
                      

             
 =∑       
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Or   MRC.M =    +    +    +…+     

Let us take the differentiation of above equation 

M (dRC.M /dt) = m1(dR1/dt)+m2(dR2/dt)+…+mN(dRN/dt) 

Now denoting the velocity of Centre of mass by VC.M, and velocities of individual particles by    

V1,V2, V3,…VN, respectively. We have 

MVC.M =   V1 +    V2 +   V3 +…+   Vn = ∑        
  

So the velocity of centre of mass , VC.M, is given by 

 VC.M =(1/M) ∑     
 
  

Also we have 

 

                       MVC.M =   V1 +    V2 +   V3 +…+   Vn = Pc.m =P 

Or                    MVC.M = TOTAL LINEAR MOMENTUM OF THE SYSTEM 

So  

                                           VC.M = P/M                

So the velocity of Centre of mass is the total linear momentum of the system of particles 

divided by the total mass of the system of particles. Or in other words, the total linear 

momentum of the system is the product of the total mass of the system and the velocity of 

the Centre of mass. 

Now for an isolated system of particles, when no external force is acting on the system, we 

know that the total linear momentum P remains constant. Hence 

                        P= PC.M = M VC.M =constant, since total mass is also constant, 

So                   

                           VC.M   = constant 

 

So, if no external force is acting on the system, the velocity of centre of mass is 

constant. 

We can similarly find the expression for acceleration of Centre of mass, when we take the 

derivative of the velocity of Centre of mass equation, we have 

M dVC.M /dt  = m1dV1/dt  + m2dV2/dt  +m3dV3/dt +…+mNdVN/dt  

 Or             M ac.m=    a1 +    a2 +   a3 +…+   aN = ∑       
 
 )                

  Or the acceleration of the Centre of mass is given by 
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aC.M =  ∑       
 
 /M 

 
also from the Newton’s second law, we have 

M aC.M=    a1 +    a2 +   a3 +…+   aN = ∑       
 
 ) =∑   

 
 =Fexternal 

So, we have the product of total mass of the system of particles and the acceleration of 

Centre of mass is equal to the total external force acting on the system. When the external 

force is zero, acceleration is zero. Hence the velocity of Centre of mass is constant as 

expected. 

5.Total linear momentum about the Centre of mass. 

Let us now consider system N particles, assuming its Centre of mass C at the position vector 

RC.M with respect to some inertial frame of reference as shown in the figure below. 

 

 

Now consider there are N particles in a system having masses m1, m2, m3,…mN, 

respectively. Now if the position vectors of each particle is given by R1, R2 , R 3,…, RN 

respectively. 

The position vector of Centre of mass is 

   RC.M   = 
                      

             
 =∑       
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Let us consider a specific mass particle mi at the position Ri, as shown in figure below: 

 

 

Now the position vector of this mass mi with respect to the Centre of mass C is RCi and is 

written as 

                       RCi = Ri –RC.M 

 Or                  Ri = RC.M + RCi  

 

For all other masses we can have similar expressions for the position vectors with respect to 

the Center of mass C. 

Now we have        M RC.M    =∑   
 
      

Or                      M RC.M    = ∑   
 
     (RC.M + RCi) 

Or                      M RC.M    = ∑   
 
    RC.M + ∑   

 
   R   

 

Now                     ∑   
 
    RC.M   = M RC.M    since ∑   

 
    =M. 

So                        M RC.M   = M RC.M    + ∑   
 
    RCi 

 

Hence                   ∑   
 
    RCi = 0 



Collision and Centre of Mass System 

Institute  of Life Long Learning, University of Delhi Page 15 
 

 

 

 

 

Or, we can write it explicitly: 

“The sum of the product of the position vector with respect to the Centre of mass 

of all the particles of a system of N particles and their respective masses is zero.” 

This is a very important result, since if we take the differentiation of this equation, we have 

∑   
 
    dR   /dt =∑   

 
    V   = 0. 

    Here V     = dR    /dt is the velocity of ith particle with respect to the Centre of mass. 

Now the summation of the product of mass mi and its velocity V  , ∑    
 
   V  , 

 Which give the total linear momentum PC =∑    

 
     =∑    

    V   of all the particles about 

the Centre of mass. Hence  

                                        PC =0                    

 “The total linear momentum of the system of N particles with respect to 

the Centre of mass frame of reference is zero.” 

So due to this result we can say that the Centre of mass frame of reference is a zero-

momentum frame of reference. In next chapter we will use this result to solve the collision 

problem in the Centre of mass frame of reference. 

6. Two body Problem-equivalent one body problem 
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Now we study motion of two particles explicitly and find out some important relations, 

we will then reduce the two-particle problem into equivalent one body problem. 

Consider two particles of mass m1 and m2, having position vectors R1 and R2, 

respectively with respect to an inertial frame of reference as shown in the figure. 

 

 

Now the position of Centre of mass is given by 

RC.M = (m1R1+m2R2)/(m1+m2) 

We have the position vectors of the two masses with respect to the Centre of mass 

frame of reference is given by 

                    RC1 = R1-RC.M   and    RC2 = R2-RC.M       

Now if we shift our origin of Co-ordinate axes at the Centre of mass, then 

We have RC.M = 0, 

So                        RC1 = R1                       RC2 = R2 

And                                 R1 +   R2  =0  

Or                                 m1/m2 = - R2/R1                                

Hence, the Centre of mass of the two-particle system divides the straight line joining the 

Centre of two masses in the inverse ratio of the two masses m1 and m2. So the heavy 

mass m2 lies nearer to the Centre of mass position RC.M. 

Now expression for the velocity of the Centre of mass is given by 

VC.M = (m1V1+m2V2)/(m1+m2) 

Similarly the expression for the acceleration of the centre of mass is given by 

                               aC.M = (m1a1+m2a2)/(m1+m2) 
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Now the total linear momentum of the two particles is given by 

                            P =m1 V1 +m2 V2 

                               = (m1+m2)VC.M 

                               = M VC.M 

                                                  = PC.M. 

Hence, 

P = PC.M                                

So the total linear momentum of the two-particle system is equal to the linear 

momentum of the Centre of mass. So this result suggests that the two particles can be 

replaced by a single particle situated at the Centre of mass position. 

Now we wish to reduce this two particle system into an equivalent one body system. 

Suppose there is no external force acting on the system of two particles under 

consideration, but only the internal forces. Then from previous discussions the velocity 

of the Centre of mass is constant. So   

VC.M = (m1V1+m2V2)/(m1+m2) = constant 

Also, as the Centre of mass lies on the line joining the centers of the two masses, the 

force acting on the first particle due to the second particle, F12  and  the force acting on 

the second particle due to the first,  F21    is directed towards the Centre of mass. Hence 

the two internal forces are the central forces. 

Now we have the position vectors of the two masses with respect to the Centre of mass 

frame of reference is given by 

 RC1 = R1-RC.M   and    RC2 = R2-RC.M 

Or   

R   - R    =  R1- R2= R. 

Now the force on mass m1 is 

                                     F12 =F(R)=f(R)  ̂ 

 And the force on mass m2 is 

                                   F21 =-  F12 =-F(R)=-f(R)  ̂. 

From Newton’s second law 

   m1 ̈1=F12= f(R)  ̂    or    ̈1= (1/m1) f(R)  ̂ 

And  
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   m2 ̈2=F21= -f(R)  ̂    or    ̈2= -(1/m2) f(R)  ̂ 

so from above two equations 

 

 ̈1 -  ̈2 = [ (1/m1)+ (1/m2) ] f(R)  ̂ 

 

Now           ̈1 -  ̈2 = ̈                       (since RC1 - RC2   =  R1- R2= R) 

Also           
 

  
 + 

 

  
  = 

     

    
 = 

 

 
  

So defining a single mass particle of mass m (also called as the reduced 

mass m) of the two masses    and    as m, where m is given by 

m = 
    

     
 

So we can have our equation of motion of two-particle system in terms of 

the reduced mass m as 

                               m  ̈  = f(R)  ̂                    

so the above equation looks like as that of a single particle of mass m having position 

vector RC.M under the action of a force f(R)  ̂ 

so we have reduced a two particle problem in to an equivalent one 

particle problem with reduced mass m .                

 

 

7. Summary 

 

 

 The collision phenomena involve exchange of linear momenta of the particles. 

 

 The total linear momentum remains conserved in elastic as well as inelastic       

collisions. 

 

 The total kinetic energy remains conserved in elastic collisions only. 

 

 The finial velocity in completely inelastic collision is given by is      

 

                          V= (m/(m+M))v 
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 The finial velocity of two particles in terms of their initial velocities is given by  

 

                        v=[(m - M)/(m+M)]u + [2M/(m+M)]U 

 

                       V= [2m/(m+M)]u +[(M - m)/(m+M)]U. 

 
 The Centre of mass of a discrete  system of particles is defined as 

 

RC.M   =
                      

             
 

=∑       
 
   , Where M is the total mass of the system of particles 

 
 For a continuous distribution of mass, we have 

RC.M = (1/M)∫      

= (1/M) ∫     . 

 

 The velocity of Centre of mass when the system of particles is moving is given by 

 

VC.M =(1/M) ∑     
 
  

 

 

 If no external force is acting on the system, the velocity of Centre of mass is 

constant. 

 

 The sum of the product of the position vector with respect to the Centre of mass of 

all the particles of a system of N particles and their respective masses is zero. 

 

 The total linear momentum of the system of N particles with respect to the Centre of 

mass frame of reference is zero. 

 

 The equation of motion of two particle system in terms of the reduced mass m as 

m  ̈  = f(R)  ̂ ,   where  ̈  -  ̈2 = ̈   and   m = 
    

     
 

 

8. Exercise. 
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Q1. The two particles have same mass. If one of them collide the other which is at 

rest, with a speed of 10m/s. find the speeds of them after the collision. 

Q2. A wooden block of 50g is suspended by a rope 10m long from the ceiling. A 

bullet is fired toward the block with a muzzle speed of 200m/s. the bullet get embedded in 

the block and the embedded system is displaced from it mean position. If the mass of bullet 

is 10g, find the amplitude of displacement. 

Q3. Two balls of 30 and 50 g are moving with speeds of 10m/s and 5m/s 

respectively. Find their speeds after the collision, assume the collision is elastic. 

Q4. Find the ratio of finial and initial kinetic energy of the inelastic collision of  two 

cars of masses 1000kg and 2000kg moving towards each other  with the speeds 40m/s and 

50 m/s respectively. 

Q5.  A particle with mass m moving with initial velocity u collide another particle of 

mass M, at rest, elastically. If the finial speed after the collision of M is V, then show that V 

is given by 

   V=[2mu/(m+M)]. 

 

Q6. The two particles of masses 10kg and 20 kg are separated by a distance on 1m. 

find the Centre of mass of the system. 

 

Q7. The electron revolves around a nucleus containing one proton. Find the Centre of 

mass of the electron-proton system. 

 

Q8. Three equal masses are situated at the vertices of an equilateral triangle of side 

2m. Find the position of the Centre of mass. 

 

Q9. Find the Centre of mass of  a uniform rod of mass m and length L. 

 

Q5. Centre of mass is at point P(1,2,3) when system consist of masses 3,4 and 5kg. 

if the Centre of mass shifts to  Q(2,4,6) on removing 5kg mass, what was its 

position? 

 

Q6. The position vectors of two masses of 3kg and 5kg are -2i-j+k and 2i+j-k 

respectively. Find the position vector of the Centre of mass and its distance from the 

origin.  

 

 

 

Q7. The position vectors of two masses are given by R1= t2 i+2j+3t k and  

 R2= 2t2 i+j+3 k, find the position vector of the Centre of mass and the Velocity of 

the Centre of mass at t=5s. Given masses are m1=2kg and m2=3kg. 

 

Q8. A bomb in flight explodes into two fragments when its velocity is 5i+j-k. if the 

smaller mass m flies with velocity 10i+20j-k ,find the velocity of larger mass 4m.  

 

Q9. Find the Centre of mass of (1)A solid hemisphere (2) A thin hemispherical shell, 

of radius r. 
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Q10. Show that a system of two planets revolving around the sun can be reduced to 

a one-particle system. 

 

Fill in the blanks: 

 

Q11. The Collision of two particles can be ___________ or in-elastic. 

 

Q12. If no _________________  is acting on the system, the velocity of Centre of 

mass is constant. 

 

Q13. The sum of the product of the position vector with respect to the Centre of 

mass of all the particles of a system of N particles and their respective masses is 

______________. 

 

Q14. The total linear momentum of the two particle system is equal 

to_______________. 

 

Q15. The total linear momentum of the system of N particles with respect to the 

Centre of mass frame of reference is ______________. 

 

 

State whether following statements are true or false: 

 

Q16. The kinetic energy is conserved in all types of collision. 

 

 

Q17. The Centre of mass of two particles always remains fixed in their collision. 

 

 

Q18. The linear momentum in collision remains conserved. 

 

 

Q19. We can reduce a two body problem in one body problem. 

 

 

Q20. The total energy remains conserved in all types of collisions. 

 

Choose the most appropriate option for the following: 

 

Q21. The kinetic energy and total linear momentum is conserved in 

(A) Eleatic collisions 

(B) Inelastic collisions 

(C) Both types of collisions. 

 

Q22. The motion a system of particle can be easily described with the help of 

(A) The Centre of mass of system 

(B) The individual velocity of the system of particles 

(C) The individual momentum of system of particles. 
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Q23. The velocity of Centre of mass is given by 

(A) VC.M =(1/M) ∑      
  

(B) VC.M =(1/M)( ∑      
 )1/2

 

(C) VC.M =[(1/M) ∑      
 

2]1/2  

 

 

Q24. When a particle moving with a velocity u collide with another similar particle at 

rest, then after the collision 

(A) The second particle remains at rest and first particle bounce back  with its earlier 

speed. 

(B) They just exchange their velocity as before the collision. 

(C) The first particle continues to move with its original velocity and the second 

particle starts to move with the velocity of first particle in the same direction. 

 

Q25. If a very massive particle collide with a lighter stationary particle, so after the 

collision 

(A) Both the particles move with equal velocity in same direction. 

(B)  The massive particle bounce back with double speed and lighter particle moves 

with original speed of massive particle in forward direction. 

(C) The massive particle continue to be in same direction with unchanged speed 

while the lighter particle moves in same direction with double the speed of  the 

massive particle. 
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Objective 

 

After studying this chapter you will understand: 

 

 The concept of Centre of mass frames and how it helps us to simplify 
the Collision problem 

 Why Centre of mass frame is known as the Zero-Momentum Frame 

 Two-body Elastic Collision in the Centre of mass Frame 

 Two-Dimensional collision problem in Centre of mass frame 

 The graphical way of representation of final momenta and its use for 

solving the Collision problem 
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1. Centre of mass frame of reference 

In the last chapter, we saw that the Centre of mass frame has total linear momentum about 

the Centre of mass zero, so we can utilize this to choose the Centre of mass as our frame of 

reference for the collision problem. Now we define the Centre of mass frame as: 

“A frame of reference fixed to the Centre of mass of an isolated (no external force is acting) 

system of N-particles, is called as the Centre of mass or C.M.  frame of reference.” 

In this frame the position vector of the Centre of mass, RC.M, is taken to be at the origin of 

the axes, so the RC.M=0 . Similarly the Velocity of the Centre of mass, VC.M=0. 

 Hence consequently the total linear momentum of the system, P, which is equal to the 

linear momentum of the Centre of mass, PC.M =M VC.M=0 (as we have seen in earlier 

chapter), is also zero. 

 So we see that in the C.M. frame of reference, the total linear momentum is zero, which is    

why this frame is also known as the ZERO-MOMENTUM FRAME OF REFRENCE. 

Also in this frame of reference, no external force is acting, so the linear momentum of the 

system remains constant which in turn implies that the linear momentum of the Centre of 

mass remains constant, hence the Centre of mass moves with a constant velocity. So the 

frame associated with the C.M. also moves with the constant velocity. So C.M. frame of 

reference is an INERTIAL FRAME OF REFERENCE. 

Now our usual frame of reference ,which is attached with the earth and assumed to be 

inertial as long as the motion is confined only on the earth, is called the LABORATORY 

FRAME OF REFERENCE. The following figure shows the two type of frame of references: 

 

Fig 8.1 

 

 



Centre of Mass Frame of Reference 

Institute of Life Long Learning Page 4 
 

2. Two particles elastic collision in Centre of mass frame 

As said earlier the C.M. frame of reference provides great simplicity as compared to the 

laboratory frame of reference. Now we study the elastic collision problem of two 

particles to elaborate this point. We also assume that the velocities of the two particles 

are very small as compared to the velocity of light, so the treatment is totally non-

relativistic. 

We shall adopt the notation as follows. The mass is denoted by m, so for two particles 

system, the masses are m1 and m2. The initial velocities are represented by ui and the 

final velocities are represented as vi. Here i=1 and 2. Now the initial and final linear 

momenta of the particles are represented as ki and pi, respectively. The kinetic energies 

are represented as Ki (for initial) and Ti (for final). Now when we consider the general 

case of 2or 3-Dimensional collision we have scattering angles represented by  i and    i. 

Now to differentiate the laboratory and Centre of mass frame of reference we use the 

primed symbols for the C.M. frame and unprimed symbols for the Lab frame. 

Now the two conservation laws can be written, using above notations, as 

(1) Law of linear momentum conservation:  k1+k2=p1+p2 

(2) Law of kinetic energy conservation      : K1+K2=T1+T2   

 

Or using ki=miui, pi=mivi  and  Ki=ki
2/2mi , Ti =pi

2/2mi , so we have the two equations as: 

                

                                m1u1+m2u2 =m1 v1+m2 v2                                                       (1) 

and 

                    (k1
2/2m1 )+ (k2

2/2m2) = (p1
2/2m1)+(p2

2/2m2)                     (2) 

 

In the collision problems the initial conditions of the two particles, namely, the masses, the 

magnitudes of momenta and the trajectories are given. So in 3-Dimensional space, we know 

the six components of initial momenta k1 and k2. We have to find six components of final 

momenta p1 and p2.  But we have only four equations (3 of each momenta equations and 

one of energy equation), so we require further information to solve the problem. Hence 

some additional information, say of direction (spherical angles        ) of one of the particle 

is necessary. 

3. Two-dimensional elastic collision 

Let us study 2-Dimensional elastic collision of two particles as shown in the following figure. 

Here laboratory frame and Centre of mass frame of reference are both shown. Here we 

assume that the second particle m2 is at rest, for simplicity of the problem. 
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Fig 8.2 

 

 

Here it is obvious from the figure that in lab frame the linear momentum of Centre of mass 

of two-particle system is non-zero, while it is zero in C.M. frame. Let us now consider the 

after collision condition with utmost care. It is redrawn below again separately. 
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Fig 8.3 

Let us denote the position vectors of first and second particles by R1 and R2 respectively 

and let RC.M be the position vector of the Centre of mass in the laboratory frame. 

Denoting the velocity of Centre of mass by VC.M , then the linear momentum of the Centre of 

mass is given by 

                           PC.M = M VC.M =(m1+m2) VC.M 

                                  =(m1+m2)[(m 1 v 1+m2 v2)/(m1+m2)] 

                                 = m1 v1+m2 v2 

                                 = p1+p2 

                                   =P 

So the linear momentum of the Centre of mass is equal to the total linear momentum of 

the two-particle system. 

Now as shown in the figure, the position vectors of the particles in the C.M. frame is 

represented as R1’ and R2’ respectively. The separation between the two particles is 

given by in the two frames as 

                                               R= R1’ –R2’ 

                                                  =(R1-RC.M) –(R2 – RC.M) 

                                                  =R1 –R2. 

Now in C.M. frame, the origin of the frame is itself at RC.M, hence we have 

                  RC.M =[m1 R1’+m2 R2’]/(m1+m2)=0 

So                                       m1 R1’+ m2 R2’=0      (1) 

Now we also have             R1’ –R2’ =0       (2) 

Adding and subtracting m2 R1’ in eq. (1) and using eq. (2), we have 
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          R1’= [m2/(m1+m2)]R  

               =(1/m1) [m1 m2 /(m1+m2)]R 

    So   R1’ =(m/m1)R                                                 (3) 

Where m=[m1 m2/(m1+m2)] is the reduced mass. 

Similarly we can have 

            R2’ = - (m/m2)R                                            (4)      

 

Now taking derivatives of eq. (3) and (4), we have velocities of the particles in the C.M. 

frame given by 

      u1’= ̇1’ = (m/m1)  ̇                                       (5) 

      u2’= ̇2’ =- (m/m2)  ̇                                      (6) 

Also taking derivative of   R= R1’ –R2’ =R1 –R2, we get 

                                    ̇ =  ̇1’ -  ̇2’ =  ̇1 -  ̇2  

                                       = u1’-u2’=u1-u2=u           (7) 

Where u is the relative velocity of the first particle w.r.t. second particle. 

 

So using eq. (5) and (6), we have 

 

                             k1’= m1 u1’= mu =-m2 u2’ =-k2’          (8) 

also                                     k1’=mu=-k2’  implies  k1’=k2’        (9) 

so THE LINEAR MOMENTA OF THE TWO PARTICLES ARE EQUAL AND OPPOSITE IN THE C.M. 

FRAME OF REFERENCE. This is the characteristic property of the C.M. frame. 

 

Now applying the law of conservation of momentum in the Centre of mass frame, we have 

Initial total momentum =final total momentum 

Or                            k1’+k2’ = p1’+p2’ 

Since                              k1’=-k2’,  

So                                p1’+p2’=0, 

Implies                            p1’=mu=-p2’                                            (10) 

Also                               p1’=p2’                                                      (11)               
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Hence BOTH INITIAL AND FINAL MOMENTA OF THE TWO PARTICLES ARE EQUAL AND 

OPPOSITE. ALSO THE TOTAL LINEAR MOMENTUM IN THE CENTRE OF MASS FRAME 

(P’=K1’+K2’ = P1’+P2’=0) IS ZERO. 

Now the conservation of kinetic energy demands 

               (k’1
2/2m1 )+ (k’2

2/2m2) = (p’1
2/2m1)+(p’2

2/2m2)    

So using eq. (9) and (11), we have 

                           k’1
2/2m =p’1

2/2m = (½)mu2                                       (12) 

so we have            u1’ =v1’   and    u2’=v2’                                          (13) 

SO THE MAGNITUDES OF INITIAL AND FINAL VELOCITIES OF THE PARTICLES REMAINS 

SAME IN C.M.FRAME. 

Now we have relations connecting C.M.frame with the Laboratory frame, as 

POSITION VECTORS     R1=RC.M+R1’                                                      (14) 

                                   R2= RC.M+R2’                                                     (15) 

INITIAL VELOCITIES    u1= VC.M+u1’  =VC.M+(m/m1)u                           (16)                 

                              u2= VC.M+u2’  =VC.M - (m/m2)u                           (17)  

FINAL VELOCITIES      v1= VC.M+v1’  =VC.M+(m/m1)u                           (18)                 

                             v2= VC.M+v2’  =VC.M - (m/m2)u                           (19) 

INITIAL MOMENTA       k1=m1 u1=m1 VC.M+m1 u1’=m1 VC.M+mu             (20)  

                                   k2=m2 u2=m2 VC.M+m2 u2’=m2 VC.M - mu            (21) 

FINAL MOMENTA          p1=m1 v1=m1 VC.M+m1 v1’=m1 VC.M+mu             (22)  

                                   p2=m2 v2=m2 VC.M+m2 v2’=m2 VC.M - mu    .        (23) 

Now we study the collision process with the help of geometrical diagrams. Since magnitudes 

of final momenta of the particles   p1’ and p2’, in C.M. frame, are equal, we draw a circle at 

origin O and radius equal to p1’=p2’=mu, as shown below 
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Fig 8.4 Vector Representation of Final Momenta 

Let us draw vector AC such that vector AO represent m1 VC.M and vector OC represent 

m2VC.M. Then by eq. (22) and (23), vector AB represent p1 and vector BC represent p2. 

In laboratory system, we have chosen k2=initial linear momentum of particle 2=0. Also the 

linear momentum of the Centre of mass in laboratory frame is given by 

                    MVC.M= (m1+m2) VC.M=p1+p2=k1+k2=k1         (since k2=0) 

 

So                  VC.M = k1 /(m1+m2)                                     (24) 

 

Now the vector OC is given by 

OC =m2 VC.M  

      = m2 k1 /(m1+m2) 

      =(m/m1)k1 

      =(m/m1)(m1 u1) 

     = mu1 , and the magnitude of OC is mu1.                     (25) 

Now the vector OB is given by 

 OB = p1’ 



Centre of Mass Frame of Reference 

Institute of Life Long Learning Page 10 
 

       = mu 

       =m(u1-u2) 

       =mu1, with magnitude given by mu1.                            (26)  

So      OC=OB=mu1                                                              (27) 

Hence we see from eq. (25) and (26), the magnitudes of the vectors OC and OB are equal 

and since point B lies on the circle, so the point C must lie on the circle, as shown below: 

 

Fig 8.5 Vector Representation of Final Momenta 

Now we think about the position of point A, if we take the ratio of length AO and OC, we 

have                             OA=m1 Vc.m   and    OC= m2 VC.M 

So 

                                             OA/OC = m1/m2             (28) 

Hence the position of point A is decided by the ratio of masses (m1/m2). We have three 

possibilities: 

1. m1=m2   implies point A will lie on the circle. 

2. m1>m2   implies point A will lie outside the circle. 

3. m1<m2   implies point A will lie inside the circle. 

 

Now we study these cases separately  

Case1. m1=m2    
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In this case, the ratio OA/OC =1, so OA=OC. Hence point A lies on the circle as shown 

below: 

 

Fig 8.6 Vector Representation of Final Momenta 

Here the angles of scattering in laboratory frame are related, as seen from the figure, as 

 1= (½) ’     

 1 +  2= (½) .     

 So after collision the two particles moves away at right angles to each other in the 

laboratory frame. Here  1 is the maximum angle of scattering. 

 

 

 

Case II. m1<m2    

The ratio OA/OC is less than 1, so OA is less than OC. Hence point A will lie inside the circle 

as shown below: 
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Fig 8.7 Vector Representation of Final Momenta 

 

Here as we see that for a given ratio of masses and initial momenta, there exist only one 

value of final momenta AB, as given by the third side of the triangle formed.  

Case III. m1>m2    

The ratio m1/m2 is greater than 1, so OA is greater than OC. Hence the point A will lie 

outside the circle as shown: 
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Fig 8.8 

As shown in the figure, there exits two values of final momenta (p1)1, (p2)1 and (p1)2, 

(p2)2 of the two particles, respectively, for each value of initial momenta (k1) and (k2). 

These are represented in the figure by the vectors AB and AB’ for the first particle and by 

vectors BC and B’C for the second particle. Vectors AB and BC corresponds to forward 

scattering for which     <   /2, whereas vectors AB’ and B’C corresponds to the backward 

scattering for which     >   /2. This was the case in C.M. frame. 

In laboratory frame, scattering angle  1 is smaller than   /2, as shown in the figure, both for 

forward and backward scattering. The angle  1 varies from zero (when AB=AC, 

corresponding to no scattering) to maximum angle  1max (when AB=AD i.e. when AB is 

tangential to the circle). 

 So we have, from the fig, 

                                         Sin  1max   = OD/OA =OC/OA =m2/m1. 

Now in the triangle   OBC, we have 

                                            2  2   +   ’ =    

Or                                        2 =  
    

 
               

Where  2 is the recoil angle for the second particle in lab frame. 
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FIG 8.9 

 

 

Now from figure. (9), we observe that 

 

       tan  1 = (p1’ Sin  ’ )/(m1VC.M+ p1’ Cos  ’)    

                = (Sin  ’ )/[(m1VC.M/p1’)+Cos  ’]    

But         p1’= m2VC.M, 

So          

             tan  1 = (Sin  ’ )/[(m1/m2)+Cos  ’]   
 

Now we consider the three case of ratio of masses, 

(1) When m1=m2, we have 

tan  1 = (Sin  ’ )/[(m1/m2)+Cos  ’]   

 tan  1 = (Sin  ’ )/[1+Cos  ’]  

             =(2Sin ( ’/2)Cos(    ) /[2Sin2 ( ’/2)]   

So 
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                           tan  1=    tan(  ’/2) 
Hence   

                                         1=     ’/2 

 

(2) When m1>m2, 

                          tan  1 = (Sin  ’ )/[(m1/m2)+Cos  ’]   

Or                           tan  1 =(m2/m1) (Sin  ’ )/[1+(m2/m1)Cos  ’]   

so as m1>>m2 , m2/m1   0 ,  so 

                                    tan  1 =0        and  1 = 0 

This means there is no scattering, if a heavier particle strikes with a lighter particle at rest. 

 

(3)When m1<m2   , 

                            tan  1 = (Sin  ’ )/[(m1/m2)+Cos  ’]   

as m1<<m2   , m1/m2    0 , so  

                            tan  1 = (Sin  ’ )/(Cos  ’) 

                                tan  1  = tan  ’ 

or                                       1 =   ’ 
 

This result shows that the scattering angle for the lighter particle in the lab frame is equal to 

the scattering angle in the C.M. frame. We can also derive the expression for the scattering 

angle for the second particle in the laboratory Frame. 

Again from the fig. (9), we have 

tan  2 = (p1’ Sin  ’ )/(m2VC.M - p1’ Cos  ’)    

        = ( Sin  ’ )/[(m2VC.M )/p1’- Cos  ’]    

Again p1’=m2 Vc.m, so 

                         tan  2   = ( Sin  ’ )/(1 - Cos  ’)  



Centre of Mass Frame of Reference 

Institute of Life Long Learning Page 16 
 

Hence 

                                         tan  2   = cot ( ’/2) 

so                                        2   =    ’)/2 
 

4. Summary. 

 

o In the C.M.frame of reference, the total linear momentum is zero, which is    

why this frame is also known as the zero-momentum frame of reference. 

 

o Both initial and final momenta of the two particles are equal and opposite. 

 

o The total linear momentum in the Centre of mass frame (P’= k1’+k2’ = 

p1’+p2’=0) is zero. 

 

o The magnitudes of  initial and final velocities of the particles remains same in 

C.M.frame 

 

o We study the collision process with the help of geometrical diagrams. Since 

magnitudes of final momenta of the particles   p1’ and p2’, in C.M. frame, are 

equal, we draw a circle at origin O and radius equal to p1’=p2’=mu , the 

magnitudes of the vectors OC and OB are equal and since point B lies on the 

circle, so the point C must lie on the circle, 

 

 

 The position of point A is decided by the ratio of masses (m1/m2).  

o We have three possibilities: 

 (1) m1=m2   implies point A will lie on the circle. 

 (2) m1>m2   implies point A will lie outside the circle. 

 (3) m1<m2   implies point A will lie inside the circle. 

 

 The relation between scattering angles in lab frame and the C.M. frame is given by 

 

 tan  1 = (Sin  ’ )/[(m1/m2)+Cos  ’]   
o When m1=m2   , we have 

tan  1=    tan(  ’/2) 
and                                        1=     ’/2 

o When m1<m2    

tan  1  = tan  ’ 
and                         1 =   ’ 

o We can also have relation for scattering angle  2   as 

tan  2   = cot ( ’/2) and       2   =    ’)/2 

 
o When m1>m2 

tan  1 =0        and  1 = 0 
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5. Exercise. 

 

Q1. Prove that in Centre of mass frame, the magnitude of velocities of particles remains 

unchanged in elastic collisions. 

 

Q2. Two masses of 3kg and 6kg have their initial velocities u1=2i m/s and u2=-3i m/s. if 

the collision is perfectly inelastic, obtain the final velocity of the Centre of mass. Also find 

the final momentum of the system in (a) lab frame, (b) C.M. frame. 

 

Q3. Two particles of mass 2kg and 4kg have their position vectors given by R1=2ti-3j and 

R2=3i-2tj. Find (1) the position vectors at the time t=6s,(2) the position vector of Centre of 

mass at t=4s,(3) the velocity vectors at t=6s,(4) the velocity of Centre of mass at t=4s. 

 

Q4. Two particles of equal mass are colliding head-on with initial speed of 10m/s and 5m/s 

towards each other. After collision if one of them move with 5m/s with an angle of 30 

degree with respect to original direction. Find the speed and direction of the other particle in 

(1) lab frame,(2)C.M. frame. 

 

Q5. Given that the ratios of two masses are 1/20, find the relation between the scattering 

angles in lab and C.M. frame of references. If one of the angles in lab frame is 30 degree, 

find the other angle. 

 

Fill in the blanks: 

Q6. In the C.M.frame of reference, the total linear momentum is _______________. 

Q7. The Centre of mass frame of reference is also called___________________. 

Q8.  Both initial and final momenta of the two particles are ______________ in C.M.frame. 

Q9. The magnitudes of initial and final velocities of the particles _________  in C.M.frame. 

Q10. Since the Centre of mass moves with a constant velocity. So the frame associated with 

the C.M. also moves with the constant velocity . So C.M.frame of reference is an 

_______________. 
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State whether following statements are true or false: 

 

Q11. The centre of mass frame is a non-inertial frame of reference. 

Q12. The total linear momentum of the C.M. of the system of is constant. 

Q13. The linear momentum of the Centre of mass is equal to the total linear momentum of 

the system of particles. 

Q14. The magnitudes of  initial and final velocities of the particles remains same in 
C.M.frame. 

Q15. In Centre of mass frame, the position vector of the Centre of mass, RC.M  , is taken to 
be at the origin of the axes. 

 

Choose the appropriate option for the followin: 

Q16.  For two particles collision of equal masses ,after collision, the two particles moves 
away  

(A)  At right angles to each other in the lab frame. 

(B)  Moves in same direction in the lab frame. 

(C)  Moves in the oppsite direction in the lab frame. 

Q17. The relation between scattering angles in  lab frame and the C.M. frame is given by 

(A) tan  1 = (Sin  ’ )/[(m1/m2)+Cos  ’]   

(B) cot  1 = (Sin  ’ )/[(m1/m2)+Cos  ’] 

(C) tan  1 = (Sin  ’ )/[(m1/m2) - Cos  ’] 

Q18. The expression for the scattering angle for the second particle in the lab. Frame is 

(A)    tan  2   = cot ( ’/2) 
(B)    cot  2   = cot ( ’/2) 
(C)    tan  2   = cos ( ’/2) 

Q19.  For collision of equal masses ,  we have 

(A)   1=     ’/2 
(B)   1<    ’/2 
(C)   1>   ’/2 
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Q20.  For an elastic collision between two particles of masses m1 and m2 in the C.M. frame. Show that 
after collision m1 and m2 moves off in opposite direction with equal linear momentum and all values of 
scattering angle is permissible. 

 

Q21. Consider two particles of masses m1 and m2 which collide and sick together on collision. Suppose  
m2 is at rest and m1 is moving with u1 velocity in +ve x direction before the collision. Discuss the motion 
of the system before and after the collision in the C.M.frame. 

 

Q22. Two particles of equal masses moves with initial velocities u1 and u2 respectively, collide 
elastically. Discuss the motion before and after the collision in the C.M. frame. 

 

Q23. When a very light particle collide elastically with a massive stationary particle. Find their finial 
velocities in lab and C.M. frame. 

 

Q24 Show that the scattering angle and lab angle are related as 

         tan  1 = (Sin  ’ )/[(m1/m2)+Cos  ’]   

 

Q25. Show that the linear momenta of the two particles are equal and opposite in the C.M. 
frame of reference 
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1.1 Introduction 

              This lesson is focused on developing the basic concepts like angular 

momentum of a particle, the torque exerted on the particle by the force about a point, 

its relationship with angular momentum, the condition on the conservation of angular 

momentum and the total angular momentum and the net torque exerted on a system of 

particles. This will enable us to see how Newton’s laws of motion, hitherto studied for 

translational motion, can be generalized to objects executing rotational motion. 

 

Objectives 

           After studying this lesson, you should be able to 

 define the angular momentum of a particle moving uniformly in a straight line 

about a fixed point 

 develop the concept of torque exerted on the particle by the external force about 

a point and relate it with the rate of change of its angular momentum 

 generalize the definition of angular momentum and torque to three dimensions, 

and understand clearly the directions of (i) the angular momentum vector with 

respect to the position and the momentum vectors and (ii) the torque with 

respect to the force and the position vectors of a rotating object. 

 learn the conservation of angular momentum of an object moving under the 

influence of a central force 

 write the expressions for total angular momentum and net torque for a system of 

particles, each of which has an individual angular momentum and torque 

 prove that the total kinetic energy of a system of particles can be expressed as 

sum of kinetic energy of centre of mass motion and kinetic energy of motion with 

respect to centre of mass of the system.  
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1.2 Angular Momentum of a Particle about a point 

   Let us begin with the simplest case of one particle with no forces acting on it. Consider 

a single particle P of mass m moving along a straight line AB distant d from the origin O 

with a uniform velocity v. Let r be the position of the particle represented by the position 

vector OP making angle θ with the velocity vector.  

                        

                                 

                    Fig.1.1 Uniform motion of a particle P in a straight line. The angular 

momentum L of   the particle about the origin is  m v r sin(θ) 

 

      
The angular momentum L of the particle P about the origin O is defined to be the 

perpendicular distance ON from O to the line AB and the momentum of the particle, m v. 

Since ON=OP sin  =r sin  , we can symbolically write angular momentum  

                                             L= m v r sin                                            (1.1)     

Alternatively, since the velocity component perpendicular to the line OP i.e., to the 

radius vector r is v sin  v  and we know that the angular speed of the particle, 

rv /  , we can express angular momentum 

                                     L=m r 2rmv                                                      (1.2) 

Adopting the sign convention, L is positive if the line OP turns in the positive sense(i.e., 

anticlockwise) in the plane. In the present example, shown in the figure, L is negative. 

Suppose that in time t , the particle P moves a distance v t from point P to P1
, then 

the area swept out in a time t is ( see the figure) 
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            Fig. 1.2     The area 1OPPA    is swept out in a time t . The ratio tA  /  is 

called the areal velocity. 

                           sin
2

1
rtvA                                                               (1.3) 

The area swept out per unit time is called the areal velocity, tA  / , which is  

                             sin
2

1
rv

t

A





                                                             (1.4) 

From Eq.(1.1), we note that angular momentum per unit mss, L/m, is just v r sin . 

On comparing it with Eq.(1.4), we see that areal velocity is just half of the angular 

momentum per unit mass. Further, as the free particle continues to move along the line 

AB and the perpendicular distance ON from the origin does not change with time, the 

angular momentum of the particle about the origin remains constant. 

             In order to generalize the definition in three dimensions, angular momentum is 

regarded as a vector quantity L

. It is defined as the vector product of vectors r



and p


. 

                                                   prL


                                                     (1.5) 

The magnitude of angular momentum vector is the same as given by Eq.(1.1) and its 

direction is perpendicular to the plane containing the vectors r and p. 

           You can directly verify that L is constant by calculating the change L


  of the 

vector L

  after a short interval of time t . Thus 

        ptrttrprpttr

tLttLL








)]()([)(

)()(

                                          (1.6)      
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 Note that it is only vector r


 which is changing as t changes to t+ t , whereas the 

vector p


 remains constant. The rate of change of angular momentum is therefore given 

by 

                           0








pv

t

ptv

t

L 


 ,                                                                           (1.7) 

since vectors v


 and p


 are parallel to each other. 

Exercise:  Show that, by a suitable choice of the origin, angular momentum of a free 

particle can be made zero. 

Solution 

            Move the origin O on the line of the motion of the particle. With this choice, the 

momentum vector p is parallel to the position vector r, so that 

                                           0 prL


 

1.3   Torque 

        Let us introduce the concept of torque by considering that particle P now 

experiences a force F. We can again calculate the change of angular momentum L    in 

a small time interval t  . The displacement in this small time is v t . However, in this 

small interval, the momentum also changes from p


to pp


 , where, let us recall from 

Newton’s second law of motion, Ftp


 / . Keeping this in mind, the change of angular 

momentum is 

              prprprprpprrL


 )()(                  (1.8) 

The contribution of the term, pr


 , is zero since, as before, the velocity is parallel to 

p. We would thus get 

                                 prtFrL


 )(                                              (1.9) 

Therefore, the rate of change of angular momentum is 

                                 tF
t

r
Fr

t

L









 


                                                (1.10) 

Taking the limit 0t , the second term tends to zero. We get 

                                 TFr
dt

Ld 


                                                           (1.11) 
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The vector Fr


 , is, by definition, the torque denoted by the vector T


( it is 

frequently denoted by the symbol 



also), exerted on the particle by the force 

F


about the origin. 

         Physically speaking, torque is a measure of the turning force to rotate an object 

about an axis. The most common example from everyday life is when you try to open 

the door. Consider, for example, a door hinged at some point O (see Fig.1.3)  which is 

free to rotate about a line perpendicular to the plane of the page.

 

 

Figure 1.3 :   An overhead view of a door hinged at point O with a force F applied 

perpendicular to the door. 

 When the force F is applied at the outer edge, as shown, the door can easily rotate 

anticlockwise. The effect on rotation is quite large as compared to a situation when the 

same force is applied at the point near the hinge. The magnitude of the torque T=F d, 

where the distance d is the lever arm of the force F. It is the perpendicular distance from 

the axis of rotation to the line joining the direction of the force. For a given force, 

greater the distance d, greater would be the torque. Torque is a vector perpendicular to 

the plane determined by the lever arm and the force. Its value depends on the axis of 

rotation. 

Exercise 

            If the torque required to loosen a nut that is holding a flat tyre in place on a car 

has magnitude of 30.0 N-m, what minimum force must be exerted by the mechanic at 
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the end of a 30.0 cm long wrench to accomplish this task? What would be the force 

required if he had a 20 cm long wrench? 

Answer: 

                                 Torque, T= r×F=30.0 N-m 

                         Since, r=30 cm, F=30/0.3=100 N. 

                         For r=20 cm, F=30/0.20=150 N  . 

 

Value Addition: 

You are advised to visit the following website for an animation giving you a feeling how a 

force(F) acting on a rotating body with position vector(r) gives rise to the angular 

momentum(L) and the torque(T). Watch carefully how during rotation, the directions of 

angular momentum and torque are changing with respect to the directions of the force  

and the position vector r.  

http://en.wikipedia.org/wiki/File:Torque_animation.gif#file 

 

                   There are certain situations when 
F


is parallel to vector 
r


 , i.e., the force 

acts towards ( or away from) the centre. The force is then said to be a ‘central’ force. 

The common examples are the gravitational force between two masses or the Coulomb 

force between two charged particles. In such cases, torque would be zero and therefore 

0/ dtLd


, implying thereby that the angular momentum of the particle is 

conserved. 

http://en.wikipedia.org/wiki/File:Torque_animation.gif#file
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Exercise 

              Show that the angular momentum of a particle, moving under central force is 

conserved. 

   Proof: 

                 A central force acting on a particle depends only upon the magnitude of its 

distance from a fixed centre. If r


  is the instantaneous position vector of the particle 

relative to the fixed centre O, then the central force is represented by 

                                                    rrfF ˆ)(


  ,                                              (1.12) 

where f(r) is a scalar function of distance r and rrr /ˆ


 . 

The torque acting on the particle is 

                                  0)(ˆ)( 









r

r
rrfrrfrFr

dt

Ld
T







                     (1.13) 

So that                        tconsvmrL tan


.                                                  (1.14) 

If the angular momentum, L

, is constant, it should be perpendicular to the plane 

containing both vandr


. This implies that the path of the particle under the influence 

of central force lies in the plane. As discussed above (cf., Fig.(1.2)), when the vector r


 

from the centre of force O changes to rr


 , the vector area swept by the radius vector 

during time interval t is given by 

                                            trrA  )
2

1
(


.                                             (1.15) 

Therefore, the areal velocity 

                                         mLrrtA 2/)
2

1
(/


                                     (1.16) 

Since angular momentum L

 is constant for central forces, this shows that areal velocity 

remains constant, when the particle moves under the influence of central force. 

1.4 Angular Momentum, Torque and Kinetic Energy for a System of Particles 
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             Let us consider a system of particles with both external and internal forces 

acting on them. The total angular momentum of the system can be obtained by adding 

the angular momenta of the individual particles, i.e., 

                    L = r1 ´ p1 + r2 ´ p2 +..................+ rn ´ pn                                   (1.17) 

Similarly the total external torque acting on the system is given by  

                T = r1 ´F1e + r2 ´F2e +.................+ rn ´Fne                                (1.18)
 

This result is clearly the generalization of Eq.(1.11) obtained above to a system of 

particles. Another important generalization is that the total torque exerted by external 

forces is the rate of change of the total angular momentum, which can be 

mathematically expressed as 

                                           
dt

Ld
eT



  

Indeed this equation assumes that internal forces do not contribute to the change of the 

total angular momentum. This is in accordance with common experience, viz., bodies do 

not spin on their own without external torques acting on them. This equation is clearly 

the rotational analogue of the equation 

                                                  
td

pd
eF




 .  

  Let us now consider the kinetic energy of a system of particles. Assume that the 

position vector of a particle of mass mi  (i=1 to n) is ri  with respect to the centre of 

mass of the system. Then if the position vector of the centre of mass from the origin is 

R


, the position vector of the ith particle with respect to the origin is R+ ri . Thus the 

kinetic energy, K,  of this mass is 

                             

dt

ird

dt

Rd
im

dt

ird
im

dt

Rd
im

dt

ird

dt

Rd
imK





.

2

2

1
2

2

1

2

2

1








































                         (1.19)

 

Adding up the contributions of all the particles, we find the first term becomes 

                                 
2

2

1















dt

Rd
im



  ,                                                         (1.20) 

which represents the kinetic energy of the motion of centre of mass. 
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       The term dri / dt is the velocity of the ith particle in the frame in which the centre of 

mass is at rest. Thus the second term contributes to the kinetic energy of the motion 

with respect to the centre of mass, which is 

                                 
1

2
mi
dri

dt

æ

è
ç

ö

ø
÷

2

å
                                                           (1.21)

 

So far we obtain the sum of two kinetic energies. But, what is the contribution of the 

third term? The third term, summed over all the particles, can be expressed as 

                           




















M

M

irim

dt

d

dt

Rd


 

Look at the expression  )/( Mirim


. This represents the position vector R


of the centre 

of mass with respect to itself, i.e., zero. Therefore, the third term vanishes. 

        We have thus obtained the basic result, viz., 

          Total kinetic energy of a system of particles= Kinetic Energy of CM 

motion + kinetic energy of motion with respect to CM.                                  

Summary            

            In this lesson you study 

 the basic concepts of (i) angular momentum of a particle moving with uniform 

velocity about a point ; (ii) the torque exerted on the particle by a force and its 

relationship with angular momentum 

 the generalization of these physical quantities to write the relations in vector form 

 conservation of angular momentum of an object moving under the influence of a 

central force 

 
 
the expressions for total angular momentum and net torque for a system of 

particles, each of which has an individual angular momentum and torque 

  that the total kinetic energy of a system of particles can be expressed as a sum 

of kinetic energy of centre of mass motion and kinetic energy of motion with 

respect to centre of mass of the system.  

Exercises ( for practice) : 

Q. 1   The angular momentum and torque acting on the objects about their respective 

points are vectors which are respectively related to the linear momentum vector and  the 

force vector. In what way are these vectors different from the momentum and force 

vectors? 
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Answer:   The linear momentum p


 and the force F


are known as polar vectors, which 

change sign under inversion, whereas angular momentum prL


  is an axial vector 

which does not change sign under inversion (since both the vectors, pandr


 change 

sign under inversion). Similarly, the torque, FrT


   is also an axial vector . Both the 

angular momentum and the torque cause rotational motion whereas linear momentum 

and force refer to the translational  motion.  

Q. 2    The torque acting on a body about a given point is expressed as LAT


 , where 

A


 is a constant vector and L

is angular momentum of the body about the point. From 

the statements given below, tick the one which is true / false, giving reason: 

(a)  
dt

Ld


 is perpendicular to L

 at all instants of time; 

(b)  The component of L

 in the direction of A


 changes with time. 

Solution: Since torque is defined as 
dt

Ld


 and it is expressed as a cross product of the 

vectors, A


 and  L

, it must, by definition, be perpendicular to L


. Statement (a) is true. 

Since  
dt

Ld


 is perpendicular to the vector A


, the component of L

 in the direction of  A



can not change with time, the statement (b) is false. 

Q.   3      In the question given below, mark the correct choice, justifying your answer. 

A mass is moving with a constant velocity along a line parallel to the x-axis away from 

the origin. The angular momentum with respect to the origin  

(a)  is zero               (b) remains constant           (c) goes on increasing              

    (d) goes on decreasing 

Answer :  The correct choice is (b). The reason is, mass is moving with constant 

velocity and the perpendicular distance from the origin  to the x-axis remains constant, 

since particle is only moving along the x-axis. 

Q.  4       A particle of mass m is whirled in a circular path with constant angular velocity 

and its angular momentum is L. If the string is now halved, keeping the angular velocity 

same, how would its angular momentum be affected? 

Solution:  In a circular orbit, the angular momentum L=r p= mv r. Since v=rω, L=m

2r , and if the string is now halved, i.e., it becomes r/2, therefore the angular 

momentum is reduced to L/4. 

Q.  5    Find out the magnitude and direction of the torque, about the origin, due to a 

force,  kFF ˆ
0


 newton, acting on a point whose position vector jir ˆ55 


meter. Is 

the torque also perpendicular to r? 
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Answer:   The torque  FrT


 . Substituting the expressions for the position vector 

and the force, we get ).ˆˆ(5 jiT 


Its magnitude is mn25 , and it acts in the x-y 

plane, making the angle  θ=-π/4 with the x-axis. Yes, the vector T is also perpendicular 

to the vector r ( scalar product is zero). 

Q. 6       Mark the correct choice, justifying your answer 

The angular momentum of a particle moving in a circular orbit with a constant speed 

remains constant about 

(a) any point on the circumference of the circle 

(b) any point inside the circle 

(c) any point out of the circle 

(d) the centre of the circle. 

Answer:   In a circular orbit, the radius of the orbit is constant and also since the 

particle has the same speed, L =m v r remains constant. At any point inside or outside 

the circle, the distance and angle of the orbiting particle with respect to the point would 

be changing with time. And at any point on the circumference, r would be zero. The 

correct choice is, therefore, (d). 

Q. 7    The position vector of a particle with respect to origin O is r


. If the torque acting 

on the particle is zero, out of the following statements, mark the ones which are correct: 

(a) Linear momentum of the particle remains constant 

(b) Angular momentum of the particle about O is constant 

(c) The force applied to the particle is perpendicular to r


 

(d)  The force applied to the particle is parallel to r


. 

Answer. Since torque is zero, it means 
dt

Ld


=0. So L

 is constant. Statement (b) is 

therefore correct. Also,   if torque, which is given by, FrT


 , if zero would imply that 

the force is parallel to r. So statement (d) is also correct. 

Q.  8   A particle moves in a circular orbit with uniform angular speed. However, the 

plane of the circular orbit is itself rotating at a constant angular speed. Out of the 

following statements given below, mark the one which is true and which is false: 

(a)  The angular velocity of the particle remains constant but its angular acceleration 

varies 

(b)  The angular velocity of the particle varies but its angular acceleration is constant. 

Answer:  The angular velocity vector, being normal to the orbit, is constantly changing 

its direction. So statement (a) is false. But rate of change of this vector is constant, 

implying that angular acceleration is constant. Thus statement (b) is true. 

Q.   9     Find out the centripetal force acting on a particle of mass m rotating in a plane 

in circular path of radius r and angular momentum L. 
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Answer: The angular momentum of the particle L=r p=m v r , which gives  v=  L/ m r. 

Now, the centripetal force is 3

22

rm

L

r

vm
 . 

Q.  10   A stone tied to the end of a string of length l is whirled along a circular path. If 

the string suddenly breaks, what would happen? 

(a) Would angular momentum of the body become zero? 

(b)  Would the stone drop down? 

(c) Would the stone fly along the tangent to the circular path? 

(d)  Would the stone fly outward? 

Answer:  Since no external torque acts on the stone even after the string breaks, the 

angular momentum will remain unchanged ( only centripetal force is no longer provided 

when the string breaks). The stone would fly along the tangent to the circular path. The 

correct choice is (c). 

Q. 11   A comet is orbiting around the sun . The maximum and minimum distances 

of the comet from the sun are mandm 1010612104.1   respectively. If the velocity 

nearest to the sun is 
sm /4107
, what would be the velocity in the farthest  position. 

   Solution:  The area velocity of the comet is comet is constant, which implies 

                     sm
r

rv
vrvrv /3103

12104.1

410710106

2

11
22211 




  

Q.  12    A disc is rotating with angular velocity 


. A force acts on a point whose 

position vector with respect to the axis of rotation is r


. Find the expression for the 

power associated with the torque due to the force. 

Answer:   Torque is given by FrT


 . The power associated with the torque 

                      


).(. FrTP   
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Rotational Dynamics 

Lesson 2 

2.1 Introduction 

             In this lesson, we turn our attention to study the mechanics of a rigid body. A 

rigid body is one which maintains its shape even in the presence of external forces which 

can cause a translational or a rotational motion. In the presence of external forces acting 

on a body, it would be pertinent to understand the role played by the net torque acting 

on it to obtain the conditions for rotational equilibrium. An understanding of equilibrium 

problems is important in a variety of fields such as in architecture or civil engineering or 

even in biology to understand the forces working in muscles and joints.  

 

                

Objectives 

            After studying this lesson, you should be able to 

 state the requirements to be imposed on an object to be in mechanical 

equilibrium (including rotational equilibrium) 

 define the moment of the force and use the principle of moments to locate the 

centre of gravity of an object 

 establish a relationship between torque and the angular acceleration of a particle 

of mass m revolving about a radius r in terms of its moment of inertia 

 extend the above relation in the case of a solid disc rotating about a given axis 

2.2   Rotational Equilibrium and the Principle of Moments 

             We are all familiar with the common balance which simply consists of a beam 

turning about a fixed point. Two objects, because of their weights, exert downward 

forces on the beam at equal distances from the fixed point. When the two forces are 

equal, the balance does not turn in either direction. It is said to be in equilibrium. What 

happens when the two distances are not equal? We have learnt from elementary courses 

that when the weights W1 and W2  of the two bodies are at distances d1 and d2 from the 

point of rotation, there is equilibrium, [i.e., no rotation about the fulcrum(i.e, the point 

about which the beam is free to rotate)] when the two bodies satisfy the condition 

(sometimes called the lever principle) 

                                            W1d1 =W2d2       .                                      (2.1) 

      Let us try to generalize this result by considering a general case. Suppose there are 

two forces acting on an object as shown in the figure. In this example, force 1F


 tends to 

rotate the object counter clockwise, whereas the force 2F


rotates it clockwise. We use 

the convention that the sign of torque is positive if it has the tendency to turn counter 

clockwise and negative if it is turning clockwise. Remember that the units of torque are 

units of force times length, i.e., newton. meter(N.m). 

    



Rotational Dynamics / Mechanics-II 

Institute of Lifelong Learning, University of Delhi 

                                 

     

        Fig. 2.1  The force 1F


tends to rotate the object counter clockwise about O and 2F


tends to rotate it clockwise. 

 From the figure, it is clear that the torque associated with the force 1F


, which has a 

moment arm 1d  is positive and equal to 11dF ; and the torque associated with 2F


 is 

negative and equal to - 22dF . Thus the net torque acting on the object O is found by 

summing the torques: 

                                  221121 dFdFTTT                                         (2.2) 

The product of the applied force, say, 1F  and the corresponding perpendicular distance, 

1d
, of its line of action from the point about which the body is free to rotate is also 

known as the moment of the force. 

      From the study of translational motion you have learnt that objects that are either at 

rest or moving with constant velocity are said to be in equilibrium. Since acceleration is 

zero, this condition is mathematically expressed as 

                                            0F


.                                                      (2.3) 

It means that the vector sum of all the forces (the net force) acting on an object in 

equilibrium is zero. Is this condition sufficient to ensure complete mechanical 

equilibrium? To answer this question, let us consider the following exercise: 

           Suppose we have a packing crate being pushed by two forces of equal magnitude 

but acting in opposite directions as shown in the figure (2.2). 
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                     Fig. 2.2 A top view of a packing crate being pushed by forces of equal 

                                              magnitude and in opposite directions 

Here each force produces clockwise rotation, the resulting torques are both negative. 

The net torque produced by the two forces is  -2Fd , i,e., producing clockwise rotation. 

             The example considered above  illustrates that in order to understand the effect 

of a force or two or more forces on an object, we must know not only the magnitude and 

direction of the forces but also their points of application. In other words net torque 

acting on an object must also be considered. We are thus led to two requirements that 

must be imposed on an object to be in mechanical equilibrium: 

1. The net external force must be zero.       0F


. 

2. The net external torque must be zero.   .0T


 

The first condition is obviously a statement of translational equilibrium, while the second 

is for rotational equilibrium. 

       One of the forces that must be considered while dealing with a rigid object is that of 

gravity acting on the object. To find out the torque due to force of gravity, all of the 

weight can be thought of concentrated at a single point. 

 Let us now apply the principle of moments by considering an object of arbitrary shape 

lying in the x-y plane as shown in the figure (Fig.2.3). Suppose that the object is divided 

into a large number of very small particles of masses 2,1 mm , etc., located at positions (

....).........3,3(),2,2(),1,1 yxyxyx , etc., with reference to an origin O. If the object is free 

to rotate about the origin, each particle contributes a torque about the origin, which 

would be equal to its weight multiplied by its lever arm. For example, the torque due to 

the weight gm1  is 11gxm  and so on. 
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   Fig. 2.3 The centre of gravity of an object where all the weight of the object can be 

considered to be concentrated. 

         The point where all the weight w of the object can be considered to be 

concentrated is called the centre of gravity of the object. This is the point of 

application of the single force whose effect on the rotation of the object is the same as 

that of the individual particles. To locate this point, we apply the principle of moments, 

or equivalently equate the torque exerted by w at the centre of gravity to the sum of the 

torques acting on the individual particles. 

      As the object is in equilibrium about the fulcrum, equating the torque exerted by w 

at the centre of gravity to the sum of the torque acting on the individual particles about 

the fulcrum must be zero. We get 

        cgxgmgmgmxgmgxmgxm ......)321(..........3.32211  ,                   (2.4) 

which gives 

              iximimcgx    or                





im

ixim
cgx .                                  (2.5) 

 Similarly, the y-coordinate of the centre of gravity of the system can be obtained as 

                                          




im

iyim
cgy                                                        (2.6) 
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Note that centre of gravity of a symmetric,  homogeneous body always lies on the axis 

of symmetry. For example, centre of gravity of a homogeneous sphere or that of cube 

must lie at the geometric centre of the object. A homogeneous rod has its centre of 

gravity at its centre. 

Example: 

           Find the centre of gravity of a triangle made up of three equal masses at its 

vertices as given in the figure (Fig.2.4). 

                              

      Fig. 2.4 Three equal masses placed at the vertices 3.2,1 PPP  of a triangle. 

Answer: 

           Let us write the two equations (2.5) and (2.6) given above in the vector form. 

Then 

                                    





im

irim
CR  

In the case of the given triangular arrangement of masses, we write 

                                 

m

rrrm
CR

3

)(
321


  

                                      =






















12

3
2

)21(2
r

rr

 

The last expression has the following physical meaning: The first term in the numerator 

of the bracket represents the centre of gravity of one particle of mass=2m, located at 

the mid point M of two masses at the vertices (1) and (2) and then combined with the 

third mass. The centre of gravity is thus obtained by taking the median of the triangle 

(line joining the vertex to the mid point of the opposite side) and dividing in the ratio of 

2:1(see the figure). It is interesting to notice that you could have started with 

any one of the three pairs and got the same result. Do you know, Why? Because 

remember, medians of the triangle intersect at a common point, which divides all of 



Rotational Dynamics / Mechanics-II 

Institute of Lifelong Learning, University of Delhi 

them in the ratio o 2:1. This is called the ‘centroid’. Even if we had considered the 

triangle made up of three uniform rods, the centre of gravity would be the same point. 

 

Exercise 

          A uniform horizontal beam having weight of 500 N and 5.0 m long is attached to 

a wall through a ‘plug’ connection that allows the beam to rotate. Its far end is 

supported by a cable that makes an angle of 
060 with the horizontal (See Fig. 2.5 ). If a 

person whose weight is 600 N stands on the beam at 1.5 m from the wall, find the 

tension in the cable and the force exerted by the wall on the beam. 

                               

 

 

 

                                                              Fig. 2.5 

Solution 

     Let us first identify the forces acting on the beam: (i) the forces on the beam consist 

of the downward force of gravity having a magnitude of 500 N at its centre of gravity; 

(ii) the downward force exerted by the man, which is his weight of 600 N acting 

downward at 1.5 m from the wall; the force of tension S exerted by the cable and the 

force R exerted by the wall. 
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                            Now, applying the conditions for equilibrium on the x- and y- 

components of the forces, 

we find                             

0600500)060sin(

0)060cos(





NNSyR

SxR
 

Clearly, there are three unknowns and only two equations. We have now to use the 

second condition of equilibrium, i.e., on the torque acting on the beam. Thus 

                          

                 0)5.1()600()5.2()500()0.5())060sin((  mNmNmS , 

which enables us to get the value of S=500N. Using the above two equations, we get 

                    NyRandNxR 670250   

2.3  Relationship between Torque and Angular Acceleration 

         Suppose we have a system consisting of an object of mass m connected to a 

very light rod of length l. The rod, pivoted at the point O, is rotating on a frictionless 
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horizontal table as shown in Fig.2.6. Let us assume that a force tF


perpendicular to the 

rod and therefore tangential to the circular orbit is acting on mass m.  

 

 

                    Fig.2.6 

Due to this force the object undergoes a tangential acceleration given by 

                                               tamtF


   ,                                             (2.7) 

according to Newton’s second law. Multiplying the left and right sides of this equation by 

r, we write the above equation as 

                                               rtamrtF


                                              (2.8) 

From our earlier study, we know that tangential acceleration and angular acceleration 


 

of a particle rotating in a circular path are related by 


rta  . Thus, we have 

                                              
 2rmrtF                                               (2.9) 

The left hand side of this equation is the torque acting on the object about its axis of 

rotation This gives us an important relation 

                                               
 2rmT                                                    (2.10) 
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showing that torque acting on the system is directly proportional to the angular 

acceleration. The constant of proportionality, 
2rm , is called the moment of inertia of 

the object of mass m (since, by assumption, rod is considered light, its moment of 

inertia can be neglected).  

2.5.1 Torque on a Rotating Object 

       Let us now extend our study to a rigid body. A rigid body, as mentioned before, 

is a system of particles in which the relative positions of the particles remain 

fixed under the application of forces. It means that a rigid body retains its 

shape during motion. 

    Consider a sold disc rotating about its axis as shown in Figure 2.7(a). The disc 

consists of many particles at various distances from the axis of rotation. This is 

illustrated in Fig.2.7(b). The torque acting on each one of these particles is given by                  

 

                                                Fig. 2.7 (a)                                

                                                                         

                                                                

                                                                               Fig.2.7(b) 

Eq.(2.10). The total torque acting on the disc is the sum of the individual torques on all 

the particles, viz., 

                                           




 

 2rmT                                             (2.11) 
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Since the disc is rigid, all particles have the same angular acceleration, so 


is not 

appearing within the summation sign. Labelling the masses as 3,2,1 mmm .....located 

respectively at the positions 3,2,1 rrr ...... from the centre, as shown in Fig.2.7(b), we 

write 

                                  .....2
33

2
22

2
11

2 rmrmrmrm                              (2.12) 

This quantity is the moment of inertia of the disc and is given by the symbol I: 

                                         2rmI                                                            (2.13) 

The moment of inertia has S.I units kg.
2m . Using this relation, Eq.(2.11) can now be 

written as 

                                                   


IT                                                      (2.14) 

The angular acceleration of an extended rigid object is proportional to the net 

torque acting on it. The constant of proportionality is the moment of inertia of the 

object. 

        Note that Eq.(2.3) is, in fact, the rotational counterpart to Newton’s second law of 

translational motion represented by   amF


: the force and mass in linear motion 

respectively correspond to torque and moment of inertia in rotational motion. 

An important difference between m and I is that whereas m depends only on the 

quantity of matter in an object, I depends on both the quantity of matter and the 

distribution (through the term 
2r ) in the rigid body. 

The image and the link below show the direction of radius vector, force and torque and 

the effect of radius vector on the force and torque. 
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http://www.animations.physics.unsw.edu.au/jw/rotation.htm 

Credits:  Authored and Presented by Joe Wolfe 

Multimedia Design by George Hatsidimitris   

Laboratories in Waves and Sound by John Smith 

 

 

 

 

 

 

 

 

 

 

 

 

 

Question 

Question Number Type of question 

1 Objective 

 

 

 

 

 

 

Correct Answer / 

Option(s)            

a) False  

b) False 

c) False 

d) True 

 

 

A net torque is applied to an object. Which one of the following will not be 

constant? 

(a)angular acceleration of the object 

(b) moment of inertia of the body 

(c) centre of gravity 

(d) angular velocity of the object  

 

 

 

http://www.animations.physics.unsw.edu.au/jw/rotation.htm
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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Justification/ Feedback for the correct answer 

     A net torque applied to an object will not change angular acceleration, nor does it 

change the center of gravity nor the moment of inertia. It only changes the angular 

velocity. So the correct choice is (d). 

Summary 

           In this lesson you have studied 

 the requirements to be imposed on an object under the influence of a number of 

forces when in  mechanical (rotational) equilibrium 

 the definition of centre of gravity of a body and locating its coordinates using the 

principle of moments 

 to establish the expression for the torque acting on a particle of mass m revolving 

in an orbit of radius r in terms of its angular acceleration 

 to extend this study for a solid disc(rigid body)  rotating about its axis and obtain 

a relation between torque, angular acceleration and moment of inertia of the disc 

about the axis of rotation. 

 

  Exercises   

1. A gun of mass M is initially at rest on a horizontal frictionless surface. It fires a 

bullet of mass m with velocity v. From the statements given below, tick which one 

is false and which one is true, giving proper reason. 

(a)  After firing, the centre of mass of the gun-bullet system moves with a velocity m 

v /M opposite to the direction of motion. 

(b)  After firing, centre of mass of the gun-bullet system remains at rest. 

Answer:  Statement (a) is false but (b) is true. Since there is no external force 

acting on the gun-bullet system, the centre of mass of the system remains at rest. 

2. A system of particles of masses, nmmmm .............3,2,1  are located at the points 

nxxxx ,.....3,2,1  along the x-axis. Which principle do you use to locate the centre 

of gravity of the system? Write the expression for its centre of gravity. 

Answer : We apply the principle of moments, or equivalently equate the torque exerted 

by weight of the system at the centre of gravity to the sum of the torques acting on the 

individual particles.The centre of gravity of the system of particles is      








n

i
im

n

i
ixim

CGx

1

1
 

3. Two particles of equal mass move with velocities .ˆ2
ˆ

1 jvandiv  


 The 

acceleration of the first particle is )ˆˆ(1 jia  


, where α and β are constants. If the 

acceleration of the second particle is zero, how will the centre of mass of the two 

particles move? 
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Answer:     )ˆˆ(
22

21

21

2211 ji
vv

mm

vmvm
CMv 













,  since the two particles have 

equal mass.  Similarly, the acceleration of the centre of mass a )ˆˆ(
2

1
2

jiaCMa 
 

.  

Since velocity and acceleration vectors are parallel to each other, the centre of mass will 

move along a straight line. 

4. The mass per unit length of a non-uniform rod AB of length varies as m=k x/ L, 

where k is a constant and x is the distance of any point of the rod from the end A. Which 

one of the following is a correct statement? 

(a) The distance of the centre of mass of the rod from the end A is L/3. 

(b)  The distance of the centre of mass of the rod from the end A is 2 L/ 3. 

Answer:  In this case the mass is continuously varying. Therefore, the summation has 

to be replaced by the integration. Thus 

              
3

2

0

0

2

)(

)( L

L

dxx
L

k

L

dxx
L

k

dM

xdM

CMx 








 

The correct statement is (b). 

5.  A rectangular coil, ABCD, of length a and breadth b is suspended in the x-y 

plane. A force F acts along the positive z-axis perpendicular to the length AB and 

another force of the same magnitude but along the negative z-axis acts normal to 

the length CD of the coil as shown in the figure. How will the pair of these forces 

affect the position of the coil? 
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Answer:    Since the two forces have equal magnitude  but act in opposite direction, 

they would form a couple and produce a torque of magnitude F times b causing the 

coil to rotate (anti-clockwise) about the x-axis. 

6. A solid sphere is rotating in free space. If the radius of the sphere is increased. 

Keeping its mass the same, which one of the following will not change? 

(a)   Moment of inertia                   (b)  Angular momentum        

 (c) Angular velocity                       (d)   Rotational kinetic energy 

Answer:  Since no torque acts on the sphere, its angular momentum L=I ω is 

conserved. If the radius of the sphere is changed, I and hence ω will both change. Also 

rotational kinetic energy=
2

2

1
I will also change. So the angular momentum will not 

change. 

7. An equilateral triangle , ABC , formed from a uniform wire has two small identical 

beads initially located at A. The triangle is set rotating about the vertical axis AO. Then 

the beads are released from rest simultaneously and allowed to slide down, one along AB 

and the other along AC as shown in the figure. Neglecting frictional effects, the 

quantities which are conserved are: 

 

 

X 

Y 

Z 

F 

F 

b 

a 

A 

B 
C 

D 
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(a)    angular velocity and total energy ( kinetic plus potential) 

(b)    total angular momentum and total energy 

(c)    angular velocity and moment of inertia about the axis of rotation 

(d)    total angular momentum and moment of inertia about the axis of rotation 

Answer:  As no external torque acts on the system, the angular momentum L is 

conserved. As the beads slide down, the moment of inertia of the system will change. 

From the relation L=I ω, angular velocity ω will change. Since the total energy can not 

change, the correct choice is (b). 

8. A 0.1 kg stone is revolved at the end of a 0.5 m long string at the rate of 2 

revolutions per second. If after 25 s, it is making only one revolution per second, find 

the mean torque. 

Answer:   The angular momentum L= )22(2)5.0(1.02  rm  

                Torque, T= d L /d t=
3102

25

22)5.0(1.02  


dt

d
rm . 

9. If A denotes the areal velocity of a planet of mass M, assuming that it has a 

circular orbit of radius R, estimate its angular momentum. 

Answer:   Areal velocity, A,  is defined as the area swept by the radius vector per unit 

time.  Thus         
2/2,2/2

/2,/2

RAgiveswhichR

TwhereTRA








 

Now ,  Angular momentum L=I ω, where I is the moment of inertia  A=
2RM . Thus, 

Angular momentum = 2 M A. 

10.     A molecule consists of two atoms, each of mass m, separated by a distance a. 

The rotational kinetic energy of the molecule is K and its angular frequency is ω. If I is 

A 

B 
C 

O 

g 
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the moment of inertia of the molecule about its centre of mass, which of the following 

statements are correct? 

(a)   
2amI           (b)   

m

K

a

1
           (c) 2/2amI       (d)  

m

K

a

2
  

Answer :   The centre of mass is at a distance of a/2 from each atom, as the two atoms 

have the same mass. Therefore, the moment of inertia I=2m 2/22)2/( ama  Also 

kinetic energy K=
2

2

1
I  , which gives  

m

K

a

2
 . So the statements  ( c ) and (d) 

are correct. 
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Unit IV:  Rotational Dynamics 

Lesson 3 

3.1 Introduction 

               In the preceding lesson (Lesson 2, Rotational Dynamics), we studied how a 

torque acting on a rotating object about a given axis can be expressed in terms of its 

moment of inertia. We shall here extend this study to establish the relation between 

angular momentum and moment of inertia of rigid bodies. This lesson also highlights a 

few examples from everyday life demonstrating the principle of conservation of angular 

momentum.    

Objectives 

         After studying this lesson you should be able to  

 derive the relationship between angular momentum and moment of inertia of a 

rigid body in terms of its angular velocity of rotation 

 describe an example when the direction of angular momentum vector is not along 

the direction of the angular velocity vector 

 define the radius of gyration of a rigid body 

 state the condition under which angular momentum of a body is conserved 

 describe various examples demonstrating the conservation of angular momentum 

 know how a gyroscope works 

3.2 Relationship between Angular Momentum and Moment of 

Inertia of a Rigid Body 

      Consider a rigid body of any arbitrary shape rotating with an angular velocity 


 

about an axis AB passing through a point O, as shown in Fig.3.1. All the particles of the 

body will move in circular path about the axis AB. Let us focus on the particle P located 

at any distance r


from the point O. Let the perpendicular drawn from P on AB be PC= 0r . 

Then C will be the centre of the circle described by the point P. The linear velocity of the 

particle P is given by 
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                                    Fig.3.1 

                                           rv


 .                                                       (3.1) 

Its magnitude is 0sin rr    and direction at any instant is perpendicular to the 

position vector r


and tangential to the circular path. 

          The angular momentum of the particle P about the point O is given by 

                                       vrmprPL


          ,                                    (3.2) 

whose direction is perpendicular to .vandr


 

The angular momentum L

of the entire body about the point O will be obtained by the 

vector sum of the angular momenta for all the particles of the body i.e., 

                            )( rrmvrmPLL



                 .              (3.3) 

The direction of the angular momentum 
L


 , in general, will not be along 



     .  

The Eq.(3.3) can be further simplified, using the standard identity, 

                             CBABCACBA


).().()(   

 which reduces Eq.(3.3)   to 
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                                  rrrrmL


).().( 
                                              (3.4)

 

Or                       



  rrrmL


)cos()2( 

                                             (3.5)
 

Since 


is the angle between vectors 
r


and 



    , the magnitude of the component of    

r


along  



 will be r cos(θ). So the magnitude of the component( L ) of the angular 

momentum 
L

  along the axis of rotation will be given by 

                      )2cos1(2))cos(cos2(  rmrrrmL
 

                         =   2
0

2sin2 rmrm                                                  (3.6) 

Notice that the distance sin0 rr     , i.e., the perpendicular distance of the particle 

from the axis of rotation will be different for different particles. That is why it is within 

the summation sign. Further, since the angular velocity,  


, about the axis of rotation is 

the same for all the particles in the rigid body, it is outside the summation sign. 

              The sum
2
0

rm  in equation (3.6) represents the moment of inertia, I, of the 

body about the axis of rotation. Eq.(3.6), thus, gives an important relation between the 

component of angular momentum  L

along the axis (OA) and the angular velocity   


 

about the axis of rotation, viz., 

                                           


IL 0                                                             (3.7) 

    In the case of symmetrical object which is allowed to rotate about the axis of 

symmetry, the component of PL


  perpendicular to OA will be cancelled by an equal 

amount of the angular momentum of another particle on the opposite side of the dotted 

circle. In such cases, the net result is that the total angular momentum of the body will 

be along the axis of rotation, giving 

                                          


IL                                                              (3.8) 

Note that the relations given by Eqs.(3.7) or (3.8) for rotational motion are just the  

counter part of the relation vmp


 , expressing linear momentum in terms of velocity 

for translational motion. 

3.2.1 Value Addition:   Example when angular momentum vector is not along the 

direction of angular velocity vector of a rotating body 

                  From Eq.(4.3) obtained above it has been noticed that the direction of the 

angular momentum vector L

of a rotating body may not necessarily be along the angular 

velocity vector 


. Do you know of any example which can illustrate such a situation, 

where the angular momentum vector is not along the angular velocity vector? 

            Consider a wheel which is fixed to a shaft in a lopsided manner, but ensuring 

that its axis is passing through its centre of gravity as shown in the figure. 
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                                                      Fig. 3.1(A) 

 When you spin the wheel around the axis, you will find that there will be shaking at the 

bearings because of the lopsided way it has been mounted. You know that in the rotating 

system there is a centrifugal force acting on the wheel which tries to push its mass away 

from the axis. This would tend to bring the plane of the wheel perpendicular to the axis. 

To resist this, a torque is exerted by the bearings. How has a torque been generated 

here? To answer this, let us resolve the angular velocity vector into two parts 

21  and  perpendicular and parallel to the plane of the wheel. Now, since the 

moments of inertia of the wheel about these axes are different, the corresponding 

angular momenta about these axes would also be different. And the torque is nothing 

but the rate of change of angular momentum. Thus when you turn the wheel, you have 

to turn the angular momentum vector in space, thereby exerting torque on the shaft.  

3.3  Radius of Gyration 

            It is always possible, independent of the shape of a body, to find a distance 

from the axis of rotation at which whole mass of the body can be taken to be 

concentrated so that its moment of inertia about the axis remains the same. Thus if K is 

the distance from the axis of rotation to the point where whole mass of the body is 

supposed to be concentrated, then 

                                             22 mrMKI                                           (3.9) 

                     Or               
M

mr

M

I
K




2

 



Rotational Dynamics / Mechanics-III 

Institute of Lifelong Learning, University Of Delhi 

This quantity, K, is called the radius of gyration of the body about the axis of rotation. 

It is defined as the distance from the axis of rotation, the square of which when 

multiplied by the total mass of the body gives the moment of inertia of the body 

about that axis. 

3.4   Conservation of Angular Momentum 

  We have already seen that the rate of change of angular momentum gives us the 

torque (cf., Eq.(1.11) in Lesson 1, Rotational Dynamics), i.e., 

                                         
dt

Ld
T



                                                               (3.10) 

Using this general relation and substituting for L

from Eq.(3.8), we get 

                                 
 



I

dt

d
I

dt

Id

dt

Ld
T 

)(
                                         (3.11) 

This is the same expression as obtained earlier (cf., Eq.(2.14) in Lesson 2, Rotational 

Dynamics). According to this, torque acting on the object is equal to the time rate of 

change of angular momentum of the object. This is the rotational analogue of Newton’s 

second law dtpdF /


 . 

         When the net torque acting on the system is zero, we see from Eq.(2.14) 

                                            0




t

L


, 

implying  thereby that the angular momentum remains constant in time. In other words, 

                           fLiL                if net torque acting on the system is zero. 

The angular momentum of the system is conserved when the net external 

torque is zero. 

         You must have studied in your earlier classes various examples of conservation of 

angular momentum, which applies to both macroscopic objects such as planets as well 

as to atoms and molecules.  

       A simple but well known example demonstrating the conservation of angular 

momentum is a man standing on a turn table, holding its arms extended (see 

Fig.(3.2(a)) with a weight in his each hand. The turn table is free to rotate. To start with, 

suppose his friend sets him in slow motion. Now as he brings his hands inwards close to 

his sides, he finds that he starts rotating much more rapidly ( Fig.3.2(b)). As he draws 

inward the two weights, the moment of inertia of the weights gets considerably reduced 

since the distance of the weights from the body is much smaller than that in the earlier 

case. A reduction in the value of moment of inertia I has brought about a corresponding 

increase in the value of  . From the relation, L=I ( cf., Eq.(3.8)), it is easy to infer 

that the increase in  as a result of decrease in the value of moment of inertia I is such 

so as to maintain the angular momentum constant . 

                                                                       
 



Rotational Dynamics / Mechanics-III 

Institute of Lifelong Learning, University Of Delhi 

   

                Fig. (3.2(a))                                                          Fig. (3.2(b)) 

Value Addition: The animation given below demonstrates the phenomenon depicted in 

the above figure: 

 

http://www.animations.physics.unsw.edu.au/jw/rotation.htm#rolling  

Credits:  Authored and Presented by Joe Wolfe 

Multimedia Design by George Hatsidimitris   

Laboratories in Waves and Sound by John Smith 

 

3.4.1  Value Addition:                   A Puzzling Question 

In the example , discussed above, we stated that since there was no torque about the 

vertical axis, angular momentum is conserved, i.e., 2211  II  . With our arms pulled 

in, since the moment of inertia gets reduced, angular velocity has increased. But what 

about the energy? With our arms pulled in, we turn faster. As a result, our energy has 

http://www.animations.physics.unsw.edu.au/jw/rotation.htm#rolling
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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increased from the previous position, although angular momentum remains conserved. If 

we compare the kinetic energy before and after, the kinetic energy before is 

                     2211,1
2

12
11

2

1
 IILwhereJI    is the angular momentum. 

Afterward, we have kinetic energy , KE= 2
2

1
L . Since 12   , clearly the kinetic 

energy of rotation has increased. So, what about the conservation of energy? Have 

we done any work? When we lift a body, we do work against gravity. But here we move 

a weight horizontally,  we do not do any work. If we hold a weight and pull in, we do not 

do any work. However, that is true only when we are not rotating. When we are 

rotating, there is a centrifugal force on the weights, which are trying to move 

out. So while we are rotating, we have to pull the weights in against the 

centrifugal force. Thus the work we do against the centrifugal force must account for 

the difference in kinetic energy. 

Example 

          Consider a circular platform of mass M=100kg and radius R=2.0 m rotating in a 

horizontal plane about a frictionless vertical axle (Fig.3.3). This is called Merry-Go-

Round. Let the angular speed of the system be2.0rad./s. Suppose there is an object 

lying on this rotating platform and in order to get that you walk slowly from the edge 

towards the centre to get the object, find the angular speed when you reach a point 0.5 

m from the centre. [Take your mass m=60.0 kg and neglect the mass of the object.] 

 

                          Figure.3.3 

Reasoning    Use the principle of conservation of angular momentum . The initial 

angular momentum of the system is the sum of the angular momentum of the platform 

plus your angular momentum when you are at the edge of the merry-go-round. The final 
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angular momentum is the sum of the angular momentum of the platform plus your 

angular momentum when you are 0.50 m from the centre. 

Solution 

       Moment of Inertia of the platform is  
2.2002)0.2)(100(

2

12

2

1
mkgmkgMRPI  . 

Assuming you are point particle, your initial moment of inertia is, 

2.2402)0.2)(60(2 mkgkgmRMI  . 

The total initial angular momentum is    

smkgsradmkgiMIPIiL /2.880)/0.2)(2.440()(   . 

After you have walked to the position 0.50 m from the centre, your moment of inertia is 

2.152)5.0)(60(2 mkgmkg
f

mr
f
M

I  . 

Note that since there is no external torque acting on the system about the axis of 

rotation, there is no change in the moment of inertia of the platform. 

       Using law of conservation of angular momentum, i.e.,  fLiL   

                ffsmkg  15200/2.880   

which gives   sradf /09.4
 

Thus by reaching the point 0.5 m your angular speed has nearly doubled. 

3.4.2 Value Addition 

               Do you know how a gyroscope works? 

    During your childhood, you must have played with a spinning top or must have seen 

your friend playing with it. Do you remember having noticed the precession of the top? 

Have you ever thought; what is the reason of its precession? A rapidly spinning top 

experiences a force F due to gravity acting vertically downwards on its centre of mass. 

This furnishes a torque T about the point of contact with the floor as is shown in the 

figure (Fig.3.4 (A) ). This torque is in the horizontal direction and causes the top to 

precess with its axis moving in a circular cone about the vertical.  
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                                   Fig. 3.4(A) 

In 

Gyroscopes 

A gyroscope consists of an object with substantial angular momentum – which 

usually means at has a reasonably large moment of inertia and that it is spinning 

with a large angular velocity. It often has a gimbal mounting, as is the case here: its 

axle is mounted, with low frictional torque, in a frame with an axle at right angles to 

it, and that mounting is mounted in another frame whose axle is again at right 

angles, again with low frictional torque. This allows the last frame to be rotated in 

any direction with respect to that of the axis of the gyroscope without exerting much 

torque on the gyroscope. 

Consequently, the angular momentum of the gyroscope is (approximately) 

conserved, in an inertial frame. So, for example, an ideal gyroscope whose axis of 

rotation points at a distant star would continue pointing towards that star, even if the 

vehicle/ aircraft etc. in which it was mounted turned, pitched or yawed many times.  

 

Precession 

Let's apply 

τ  =  dL/dt 

to the motion of a rapidly rotating object, such as the wheel in the movie at right. 

At the moment shown by the upper still picture below the movie frame, the wheel is 

spinning clockwise when viewed from the left, so its angular momentum L is to the 

right, as the arrow shows. If we consider torques about the centre of the wheel, the 

weight exerts no torque about this point, but the string exerts an upwards force F 

displaced by r from that point, so the torque τ = r X F due to the string is in the 

direction shown. Now ΔL, the change in angular momentum, must be parallel to τ, 

so the L, which lies along the axle as shown, must move outwards towards the 

viewer. Further, the torque is always (approximately) perpendicular to L, so the 

motion is circular – it is called precession. 

How fast does it precess? If we make the approximation that the shaft is horizontal, 

then the angle dφ through which it precesses in time dt is just 

dφ  =  dL/L    so dφ/dt  =  (dL/dt)/L  =  τ/L  

The precession rate is proportional to the torque, so increased weight makes it 

precess faster. But either increased mass or increased spin would increase L and 

thus make it precess more slowly. 

A warning: torque and angular momentum behave differently from some other 

vectors with regard to symmetry. For example, imagine a mirror placed to the right 

of this photo, and with its normal pointing to the left. The mirror image of the wheel 

would have an angular momentum pointing to the right. For this reason, torque and 

angular momentum are sometimes called pseudo-vectors. 
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the case of a gyroscope, watch the motion of the gyroscope in the animation 
shown in the website on the figure. 

 

 

 

  

 

 

 

http://www.animations.physics.unsw.edu.au/zipped/rotation_gyro.zip  

http://www.animations.physics.unsw.edu.au/zipped/rotation_wheel.zip  

Credits:  Authored and Presented by Joe Wolfe 

Multimedia Design by George Hatsidimitris   

Laboratories in Waves and Sound by John Smith 

http://www.animations.physics.unsw.edu.au/zipped/rotation_gyro.zip
http://www.animations.physics.unsw.edu.au/zipped/rotation_wheel.zip
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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For further details, visit the following websites: 

http://physics-animations.com/Physics/English/mech.htm  

http://www.youtube.com/watch?v=TUgwaKebHTs 

http://commons.wikimedia.org/wiki/Category:Gyroscope_animations  

 

3.4.3  Value Addition:  Do you know? 

          Conservation of Angular Momentum in Astrophysics 

    An interesting example of conservation of angular momentum can be found in astro-

physics. When a massive star, at the end of its lifetime, collapses (having used up all its 

fuel) under the influence of gravitational forces, it causes a huge outburst of energy 

called a supernova explosion. The best known example of a remnant of supernova  

 

 

Supernova explosion-bing videos 

 

explosion is the Crab Nebula ( See the videos on the website given here) in the form of 

chaotic, expanding mass of gas. 

 A part of star’s mass in a supernova is released into space where it gets condensed into 

new stars and planets. Most of what is left behind collapses into what is called a neutron 

star. A neutron star is an extremely dense matter in a spherical shape with a diameter of 

about 10 km. Imagine this great reduction from the 
610 km diameter of the original star! 

And yet it contains a large fraction of the star’s original mass. As the moment of the 

system decreases during the collapse, the star’s rotational speed increases. Indeed more 

than 700 rapidly rotating neutron stars have so far been identified. Their periods of 

rotation vary from millisecond to several seconds. 

Summary 

         In this lesson you have studied 

 to derive the relation of angular momentum of a rigid body rotating about a given 

axis in terms of its angular velocity and the moment of inertia 

 define the radius of gyration of a rigid body 

 state the condition under which angular momentum of a body is conserved 

 describe examples from everyday life illustrating the conservation of angular 

momentum 

http://physics-animations.com/Physics/English/mech.htm
http://www.youtube.com/watch?v=TUgwaKebHTs
http://commons.wikimedia.org/wiki/Category:Gyroscope_animations
http://www.bing.com/videos/search?q=Nuclear+Explosion+From+Space&FORM=VQFRVP
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Exercises: 

1.  Why does the moment of inertia of a given body depend on the axis of rotation 

about which it rotates? Explain. 

Answer:   Because the distribution of mass of the body varies from one axis of 

rotation to another. As a result, the effective distance from the axis of rotation to the 

point at which the whole mass of the body is assumed to be concentrated varies from 

one axis to another. As for example, the moment of inertia of a linear (thin, one-

dimensional) uniform rod of mass M and length L about an axis passing through its 

centre of mass and perpendicular to its length is found to be 12/2LM , whereas its 

moment of inertia about the axis passing through one end of the rod and 

perpendicular to the length is given by 3/2LM . 

2. From the statements given below, mark the ones which are true/ false. Also, 

justify your answer. 

(a)  The angular momentum vector of a body is, in general, parallel to its angular 

velocity vector. 

(b)   For symmetrical objects, rotating about the axis of symmetry, the angular 

momentum vector would be parallel to the angular velocity vector. 

(c)  If a flywheel is tilted from its axis of rotation and made to rotate, there would be 

a torque acting on it. 

Answer: The statement (a) is false. From the expression, Eq.(3.3), obtained above in 

the text, it is clear that the angular momentum, L

, of a body is , in general, not parallel 

to the angular velocity, 


 . Statement (b) is true, because , in the case of symmetrical 

object which is allowed to rotate about the axis of symmetry, the perpendicular 

component of one particle in the body will be cancelled by an equal amount of the 

angular momentum of another particle on its opposite side. In such cases, the net result 

is that the total angular momentum of the body will be along the axis of rotation. 

Statement (c) is also true. This is because the moments of inertia of the wheel about the 

axes, parallel and perpendicular to the symmetry axis are different, the corresponding 

angular momenta about these axes would also be different. And the torque is nothing 

but the rate of change of angular momentum. Thus when you turn the wheel, you have 

to turn the angular momentum vector in space, thereby exerting torque on the shaft. 

3. A thin horizontal circular disc is rotating about a vertical axis passing through its 

centre. An insect, which is at rest at a point near the rim of the disc, starts 

moving along a diameter of the disc to reach the other end. During the journey 

of the insect, the angular speed of the disc: 

(a) continuously increases 
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(b)  first increases and then decreases 

(c) remains unchanged 

(d) continuously decreases 

Answer: Since there is no external torque, angular momentum of the system is 

conserved, i.e., 2211  II  . As the insect approaches the centre, its radius 

decreases, therefore the angular velocity of the disc would increase. And as the 

insect moves away from the centre to reach the opposite end, the angular velocity of 

the disc would decrease. Correct choice is (b). 

4. (a)  A boy stands at the centre of a turntable with his two arms stretched out. 

The turntable is set rotating with angular speed of 60 rev,/min. How much is the 

angular speed of the child if he holds his hands back and thereby reduces his 

moment of inertia to 2/5 times the initial value? Assume that the turntable 

rotates without friction.      

(b) Show that boy’s new kinetic energy of rotation is more than the initial kinetic 

energy of rotation.  

(c) How do you explain this increase in kinetic energy? 

Solution 

       According to conservation of angular momentum,  

                                  ffIfLiiIiL     

                 Since iIfI )5/2( ,  

Therefore, (a)           
min/.150

min/60)2/5()2/5(

rev

revif



 
 

(b)         Kinetic energy of rotation=
2

2

1
I  

          Since iIfI )5/2(   and    if  )2/5(  , therefore kinetic energy          

would increase  5/2 times. 

(c)     The boy uses his internal energy to increase his rotational kinetic energy. 

 

5. In which of the following is the angular momentum conserved? 

(a)  A planet which moves in an elliptical orbit around the sun with the sun as one of 

the foci of the ellipse 

(b) An electron describing an elliptical orbit around the nucleus 

(c) A boy whirls a stone tied to a string in a horizontal circle 
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(d)  An  - particle approaching a nucleus gets scattered by the force of 

electrostatic repulsion between the two. 

Answer:  The angular momentum is conserved in all the four cases. Since the 

object in each case is moving under the action of central force, the torque is zero 

and so the angular momentum is conserved. 

6. A rod of mass M and length L is suspended from O as shown in the figure. A 

bullet of mass m moving with velocity v in the horizontal direction strikes the end 

P of the rod and gets embedded in it. If I is the moment of inertia of the system, 

the angular velocity ω  after the collision is given by 

                                                                   

 

(a)   ω =v L          (b) ω = M v L/ I               (c) ω= m v L/I           (d) ω=I v L / m 

Answer :  From conservation of angular momentum 

                                    m v L = I ω,  which gives   ω= m v L/I . Thus (c) is the 

correct choice. 

7. Why does a symmetric top while spinning about its axis start precessing after a 

short duration? Explain. 

Answer:  
A rapidly spinning top experiences a force F due to gravity acting vertically 

downwards on its centre of mass. This furnishes a torque T about the point of contact 

with the floor . This torque is in the horizontal direction and causes the top to precess 

with its axis moving in a circular cone about the vertical.  

 

 

L 

P 

O 

m 

v 
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8. A record player of mass M and radius R is rotating at angular speed ω. A coin of 

mass m is gently placed on the record at a distance r=R/2 from its centre. What 

would be its  new angular speed? 

Answer: The initial angular momentum of the record player is  L=I ω, where I

2/2RM
    . After the coin is placed, let its angular speed is 

.
Then the new 

angular momentum would be 
 )2( mrIL

. Since no external torque is acting 

on the system, angular momentum is conserved. Therefore 

                        2
,)2(

rmI

I
giveswhichmrII







 

Substituting for I and r=R/2, we get    mM

M




2

2


. 

9. A top, shown in the figure., having moment of inertia of 4.0
2.410 mkg is free 

to rotate about the axis A B. A string, wrapped around a peg along the axis of 

the top is pulled in a manner to maintain a constant tension of 5.0 N in the 

string. If a 90 cm of the string is pulled of the peg, (a) calculate the angular 

speed of the top, assuming that the string does not slip while it is being wound 

around the peg. (b) Given that the force of gravity acting on the centre of mass 

of the top furnishes a torque of 
2100.30  N-m about its point of contact with 

the floor, estimate the angular speed of precession of the axis. 
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                                                    Fig. (5E) 

Solution 

               The amount of work done on the top by the string while it was being unwound  

                                                           =5.0 mNmN  5.421090  

This work is used to impart the kinetic energy to the top due to which it rotates 

with angular speed, say, ω. Therefore 

                                  K E= mNI  5.42

2

1
  

The moment of inertia I is given 4
2.410 mkg . 

Therefore 

                         5.424104
2

1
     , which gives the value of 

                       ω= 150 rad/s. 

The angular momentum initially associated with the top about its axis is 

                     smkgIL /2.210641041500
 . 

If p  is the (vertical) angular velocity of precession, then the torque 

                            0LpT


   , 

which is the torque provided by the force of gravity about the point of contact 

with the floor and causes the top to precess with its axis moving in a circular 

cone about the vertical. Thus 
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2103021060

 pLp    , 

             which gives p =5 rad/s. 

 

10.   A body of mass 0.5 kg is moving in a circle of radius 0.3 m with constant speed 

of 0.2 m/s. Find out its angular momentum about (i) the centre of the circle, (ii) 

a point on the axis of the circle and at a distance of 0.4 m from its centre. Also 

determine the directions of the angular momentum in each case. 

Answer :    (i) The angular momentum of the body about the centre of the circle 

                                   L=      m v r=0.5×0.2×0.3= 3 J-s. 

Its direction is perpendicular to the plane of the circle. 

                                   

 

(ii)    L= m v r =0.5×0.2×0.5=5 J-s. 

Its direction is perpendicular to the plane of the position vector (A P) and 

instantaneous velocity of the body, i.e., P B which is changing with time.    

 

X 

Y 

Z 

0.3 m C 

P 

0
.4

 m
 

A 

v 

B 
AP=0.5 m 
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Rotational Dynamics 

Lesson-4 
 
4.1 Introduction / Objectives 

              We have seen in the preceding lesson that moment of inertia of a rigid body 

rotating about a given axis plays the same role as mass has in translational motion. An 

important difference, however,  is that moment of inertia of a body depends not only on 

the quantity of matter but also on the way matter is distributed about the axis of its 

rotation. In this lesson, we shall study how moment of inertia of certain symmetrical 

objects can be analytically determined. 

 

Objectives 

         After studying this lesson you should be able to 

 explain the general  principle used to determine analytically the moment of inertia 

of symmetrical objects 

 derive the expression to find out the moment of inertia of a thin uniform rod 

about the axis passing through its centre of mass and perpendicular to the length 

 state and prove the theorems of parallel and perpendicular axes 

 deduce the expression for the moment of inertia of a thin rectangular lamina 

about the axis passing through the centre of mass and perpendicular to its plane. 

[Here you will also be able to learn the use of the theorem of perpendicular 

axes.] 

 use this general procedure to determine the moments of inertia of other 

symmetrical objects such as (i) a circular ring, (ii) circular disc, (iii) a cylinder, 

(iv) a sphere . 

 

 

4.2 Calculation of Moment of Inertia of Some Symmetrical Objects 

             We have seen that the moment of inertia of a body about an axis is given by (cf., Eq.(2.12, 
2.13)) 

                                            .....2
33

2
22

2
11

2 rmrmrmrmI
 

Clearly, an object is supposed to consist of an infinitely large number of point masses at 

different locations from the axis of rotation. In order to determine the moment of inertia, 

it is practically not possible to sum the infinite number of terms. However, if we are 

considering an object of continuous, homogeneous structure, it would then be 

justified to replace the summation by integration. Therefore, exploiting the symmetry of 

the given object, we can choose an infinitesimally small element for the moment of 

inertia over which the integration can be performed. We shall here consider a few 

examples to illustrate this basic approach. 

4.2.1 Moment of Inertia of a Thin Uniform Rod 

          Consider a thin uniform rod, PQ, of length L and mass M and AB the axis of 

rotation passing through the centre of mass O of the rod and perpendicular to its length, 

as is shown in the Figure (4.1). Let us suppose a small element of thickness dx at a 

distance x from O. The mass of this element is (m/L)dx and its moment of inertia about 

the axis AB passing through O is 
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dxx

L

M
dI 2

      

 

 

                  

                               Figure 4.1  

The moment of Inertia I of the whole rod about the axis AB will be the sum of the 

moments of inertia of all such elements lying between x=-L/2 (at the end P) to x=L/2 (at 

the end Q). Thus 

                   12

23

23

2
2/

2/
3

32/

2/

2 MLL

L

M
L

L

x

L

M
L

L

dxx
L

M
I 




























                   (4.1) 

We have thus found the moment of inertia of a thin uniform rod about the axis passing 

through the centre of mass and perpendicular to its length. 

                   Suppose we are required to determine the moment of inertia about one of 

its ends and perpendicular to the length. One way out is to carry out the above 

integration from 0 to L, which gives us the result    

                                                    3

2ML
I 

                                                   (4.2) 

Alternatively, this result can also be obtained by using a theorem of parallel axes. 

This is a general theorem, which would be useful in many applications. Let us first 

discuss this theorem. 
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4.2.2 Theorem of Parallel Axes  

               The theorem states that the moment of inertia of a body about any axis is 

equal to the sum of the moment of inertia about a parallel axis passing through its 

centre of mass and the product of the mass of the body and the square of the distance 

between the two axes. 

Proof 

        Suppose we are required to find the moment of inertia about an axis AB which lies 

in the plane of the paper and this axis is at a distance ‘a’ from the parallel axis CD 

passing through the centre of mass O of the body ( See Fig. 4.2 ). 

 

 

                       

                        Fig. 4.2 

 

                           

                               

   Consider a small element of mass m of the body at the point P, distance x from CD. 

The moment of inertia of m about AB 

                                         

2)( axmmI 
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Therefore, the moment of inertia of the whole body about AB is 

                             
   axmmamxaxmABI 2222)(

              (4.3) 

The first term on the right hand side of this equation represents the moment of inertia of 

the body about the axis passing through its centre of mass,i.e., 

                             
.2 mxCMI
                                                                (4.4) 

And, since the distance between the two axes is constant, the second term reduces to 

                           

222 Mamama  
                                                      (4.5) 

The third term, 
mx

,  in fact, represents the sum of moments of all the particle about 

the axis CD, which passes through its centre of mass. We know that the algebraic sum of 

all the moments passing through its centre of mass is zero. This proves the theorem 

stated above: 

                               

2MaCMIABI 
                                                          (4.6) 

Exercise 

         Use Eq.(4.6) to convince yourself that the moment of inertia of a thin uniform rod 

(considered in the preceding section) about an axis passing through one end and 

perpendicular to its length is given by Eq.(4.2). 

4.2.3 Theorem of Perpendicular Axes 

              Like the theorem of parallel axes, this theorem is also equally important and 

useful in determining the moment of inertia about the axes perpendicular to the plane of 

the objects, given its moments of inertia in the plane. 

              This theorem states that the moment of inertia of a plane lamina about an axis 

perpendicular to its plane is equal to the sum of moments of inertia of the lamina about 

the two axes at right angles to each other in its own plane, intersecting each other at the 

point where the perpendicular axis passes through it. 

            Let 
yIandxI

 be the moments of inertia of a plane lamina about OX and OY 

axes, which lie in the plane of the lamina, then the moment of inertia about the axis 

which is perpendicular to the plane of the lamina and passing through O is given by 

                                       
yIxII 

 

Proof 

         Consider a plane lamina as shown in the figure (Fig.4.3). 
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                  Fig. 4.3 

 

 Suppose there is a particle P of mass m lying in the plane of the lamina. Let the particle 

P be at a distance x from the axis OX and distance y the OY axis. The moments of inertia 

of the planar body about the x- and y- axis are given by 

                                
,2 mxxI
           and       

 2myyI
 

Their sum is 

                                  
  2)22( rmyxmyIxI

                            (4.7) 

Here r is the distance from the origin, which is also the distance from the z-axis, since 

the body is in the x-y plane. Therefore, for a body in the x-y plane, we have 

                                     
zIyIxI 

                                                         (4.8) 

This is the theorem of perpendicular axes. 

4.2.4 Moment of Inertia of a Thin Rectangular Lamina  

(a) About an axis perpendicular to the plane and passing through its centre of mass 

Consider a rectangular lamina ABCD of mass M, length l and breadth b placed such that 

its centre of mass coincides with the origin O, as is shown in the figure (4.4). Let YY’ be 

the axis parallel to the side AD and passing through the centre of mass about which the 

moment of inertia is to be determined. Consider a strip of width dx and area  b dx at a 
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distance x from the origin. Let its mass be µ b dx, where µ represents the mass per unit 

area of the lamina. 

 

 

 

                  

 

                                                               Figure  4.4 

          The moment of inertia of the strip about YY’ is given by 

                                                
dxbxYdI 2

 

To calculate the moment of inertia of the whole lamina about YY’, we integrate the above 

expression between the limits x=-l/2 and x=+l/2. Thus 

                     12

2

12
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 



  ,            (4.9) 

Since mass of the lamina is M=µ l b. 

 

Exercise 

               Using this procedure, you can show that the moment of inertia of the lamina 

about the axis XX’ can be written as         12

2Mb
XI 

                              (4.10) 
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Now you can apply the theorem of perpendicular axes to write that the moment of 

inertia of a rectangular lamina of mass M , length l and breadth b about the axis 

perpendicular to the plane of the lamina and passing through its centre of mass can be 

expressed as 

                                











 


12

22 bl
MYIXII

                                      (4.11) 

4.2.5 Moment of Inertia of a Thin Circular Ring (or a Hoop) 

(i) about an axis through its centre and perpendicular to its plane 

      

          Let M be the mass and R the radius of the ring or a hoop. Consider a point 

particle of mass m of the ring (See Fig.4.5). Its moment of inertia about an axis  

                                           

 

                                       

 
Fig.4.5 

passing through the centre O and perpendicular to its plane is  

2Rm
. Therefore the 

moment of inertia of the entire ring about the given axis will be 

                                            
   222 MRmRRmI

                             (4.12) 

(ii) about it diameter  

The moment of inertia of the hoop is obviously the same about any diameter. If the 

moment of inertia about the diameter XX’ is I, it will also be the moment inertia about 

the axis YY’. By the application of the theorem of perpendicular axes 

                                             

2RMYIXII 
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Since 
DIYIXI 

, where 
DI

represents the moment of inertia of the hoop about the 

diameter, we get 

                                          
2/2RMDI 

                                                      (4.13) 

4.2.6 Moment of Inertia of a Circular Disc 

(i) about an axis passing through its centre and perpendicular to its plane. 

Let us consider a circular disc of radius R and of mass M having mass per unit area 

2/ RM  
. Imagine a concentric ring of radius x and infinitesimal thickness dx as 

shown in Fig.4.6. 

                               

                                                 Fig.4.6 

 Then the area of the ring, 

                                   
dxxdA 2

 

And mass of the ring 
2

2
2

2 R

dxMx
dxx

R

M
 


. 

Therefore, moment of inertia of this ring about an axis passing through O and 

perpendicular to the plane of the disc is 
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2
2

2
x

R

dxMx
dI 

 

The moment of inertia of the whole disc about the axis passing through its centre and 

perpendicular to its plane is obtained by integrating the above from 0 to R,i.e., 

                             2
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                                    (4.14) 

(ii) About a diameter 

Since moment of inertia of the circular disc about any diameter is the same, we choose 

the diameters along x-axis and y-axis and then apply the theorem of perpendicular axes. 

Thus 

                                 2

2MR
YIXIZI 

. 

Since 
DIYIXI 

, we get, from the above equation, 

                                                     4

2MR
DI 

.                                            (4.15) 

Exercise 

        Show that the moment of inertia of an annular disc of inner radius 
1R
and outer 

radius 
2R

about an axis passing through its centre and perpendicular to the plane is 

                                     
)2

2
2
1

(
2

RR
M


 

Hint: Use Eq.(4.49) for the moment of inertia of the circular disc. The only difference in 

the present case is that now the integration limits will be from 
1R
 to 

2R
. 

4.2.7 Moment of Inertia of a Solid Cylinder  

(i) About its axis 

A solid cylinder can be considered as composed of a large number of circular discs placed 

one above the other. If each disc is of mass m and having the same radius as that of the 

cylinder, then we have seen above that moment of inertia of each disc about the axis of 

the cylinder is 2

2mR

. Thus the moment of inertia of the cylinder about its own axis is 

given by 
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                                       (4.16) 

(ii) About an axis perpendicular to the symmetrical axis and passing through its 

centre of mass 

Let us consider the cylinder of length l with its symmetrical axis along the XX’, placed 

such that its centre of mass coincides with the origin O, as is shown in the Fig.(4.7) and 

let YY’ be the axis of rotation perpendicular to the symmetrical axis and passing through 

the centre.                    

             

 

                                           Fig.4.7 

Let R be the radius of the cylinder having mass M. Imagine a thin disc of thickness dx at 

a distance x from O. Moment of inertia of this about its diameter is 

                                   4

2R
dx

l

M


 

(cf., Eq(4.14)). The moment of inertia of this disc about the YY’ axis can be obtained by 

applying the theorem of parallel axis. Thus 

                                

2

4

2
xdx

l

MR
dx

l

M
dI 

 

Now we can get the moment of inertia of the cylinder about YY’ axis by integrating the 

above expression over the limits from –l/2 to +l/2, which gives 
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                                                                     (4.17) 

4.2.8 Moment of Inertia of a Sphere 

(i) about a diameter 

          Let us represent the section of a sphere of mass M and radius R with centre O as 

shown in the Fig.(4.8). Let XX’ be the diameter about which the moment of inertia is to 

be determined. Consider a very thin circular disc of thickness dx at a distance x from the 

centre as shown in the figure. If y represents its radius and ρ the density, then its mass 

is given by                               

          

 

                                                     Fig.4.8      

                                     
 dxyMd 2

                                              (4.18) 

Therefore, the moment of inertia of the disc about XX’ is 

                                2

22

2

2 ydxyyMd
Id




                                   (4.19) 

Since the  radius of this disc is  
)22( xRy 
, we get 
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                                        (4.20) 

Hence the moment of inertia of the sphere about XX’ can be obtained by integrating the 

above expression between the limits x=-R to x=R. Thus 
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On integration we get 
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        , the final result is       

2

5

2
RMI 

                    (4.19) 

 

Value Addition: Moment of Inertia of various objects about their axis of rotation can be 

visualised through these animations shown in the website link given below: 

http://www.animations.physics.unsw.edu.au/jw/rotation.htm#I   

Credits:  Authored and Presented by Joe Wolfe 

Multimedia Design by George Hatsidimitris   

Laboratories in Waves and Sound by John Smith
 

Exercise 

          Use the theorem of parallel axis to find the moment of inertia of a sphere about  a 

tangent to the sphere. 

                          

Summary 

           In this lesson you study 

 a general procedure which is employed to determine the moment of inertia of 

some symmetrical objects 

 to state and prove the theorems of parallel and perpendicular axes 

 to obtain the expressions for the determination of moments of inertia of certain 

typical symmetrical objects like a rectangular lamina, a circular disc, a cylinder, a 

sphere and a spherical shell etc., 

 to learn the use of the theorems of parallel and perpendicular axes 

 

 

 

 

 

http://www.animations.physics.unsw.edu.au/jw/rotation.htm#I
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
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Exercises: 

1. Indicate which of the following statements are true / false, justifying your answer 

in each case. 

(a)  For a particle of a rotating rigid body v=r ω. It implies (i) ω rviir  )(),/1( . 

(b) When angular momentum of a system is conserved, it follows rotational kinetic 

energy is automatically conserved. 

(c) Value of radius of gyration of a body is independent of the axis of rotation. 

Answer: (a) As ω= 2   = constant, it does not depend on r, so (i) is false. However, 

(ii) is true. 

(b) Rotational kinetic energy 
I

L
IKE

2

2
2

2

1
  . When L is conserved, KE is 

conserved only if I remains constant. The statement is false. 

(c) Radius of gyration is the root mean square distance of particles of the body from 

the axis of rotation. So statement (c) is false. 

2. Indicate which of the following statements are true / false, giving reason in each 

case. 

(a) The moment of inertia of a rigid body reduces to its minimum value, when the 

axis of rotation passes through its centre of gravity. 

(b) Moment of inertia of a circular ring about a given axis is more than moment of 

inertia of the circular disc of same mass and same size about the same axis. 

(c) In the formation of a neutron star, spin angular velocity increases because of 

conservation of rotational kinetic energy. 

     Answer: (a) This is true, because the weight of a rigid body always acts through  its  

                  centre of gravity. This follows from the theorem of parallel axes. 

          (b) This is true because in the case of circular ring, the mass is concentrated on  

                  the rim – at maximum distance from the axis. 

   ( c) The statement is true but the reasoning is false. In the formation of          

neutron star, a heavy contraction occurs on account of gravitational pull. Moment   

of inertia decreases. As L=Iω, since L is conserved, ω increases. 

3. A solid sphere and a solid cylinder have the same mass M and the same radius R. 

If torques of equal magnitudes are applied to them for the same time, which 

would acquire greater angular speed? Explain. 

Answer:  For cylinder, 
2

2

1
RMcI        and for  sphere 

2

5

2
RMsI  . And the 

torque T=I α  or α=T/I i.e., for a given T, α is inversely proportional to I. Since 

cI > sI , therefore s > c . As the torque  is applied on the two for the same 

time, the sphere would acquire greater angular speed than cylinder. 

4. In the rectangular lamina ABCD, the side AB is a and side BC is 2 a. The moment 

of inertia of the lamina is minimum along the axis passing through 
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(a)  BC           (b)  AB         (c)   FE                (d) GH 

         Ansswer    

          

3

2

12

2)(
;

12

2)(

12

2)(
;

3

24

3

2)(
;

3

2

3

2)( amBCm
GHI

amABm
FEI

aBCm
ABI

amABm
BCI 

        Thus the moment of inertia about FE is minimum. Correct choice is (c). 

5. A rigid body consists of a circular hoop of mass M and radius R and a thin long 

uniform rod of length 2R and mass M. Find out the moment of inertia of the 

system about the x-axis. 

                                    

 

Answer:  Moment of inertia  of the about x-axis=
2

2

1
RM  

Moment of inertia of the rod perpendicular to its length and passing through its 

centre = 
3

2
2)2(

12

1 RM
RM   

Moment of inertia of the rod passing through the centre of the hoop=

2)2(2

3

1
RmRM                

Net moment of inertia of the system=
283.42

6

292)4
3

1

2

1
( RMRMRM  . 
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6. A uniform bar of length 6 a and mass 8 m lies on a horizontal frictionless table. 

Two point masses m and 2 m moving in opposite directions but in the same 

horizontal plane with speeds v and 2 v respectively strike the bar at distance a 

and 2 a from one end and stick to the bar after collision. Which of the following 

statements are true? 

(a) The velocity of the centre of mass is zero. 

(b) The angular speed of the bar with the masses stuck to it is v/(5 a). 

(c) The moment of inertia of the bar with masses stuck to it about the axis 

passing through the end of the bar and perpendicular to its plane is 30 m
2)(a  

(d) The total energy of the bar is 
2

5

3
vm . 

Answer: Since no external force is applied, linear momentum is conserved,i.e., 

             (8 m +m+2m) 08)2()(2  mvmvmCMv , which gives 0CMv . 

        The moment of inertia of the system is      

2302)6()8(
12

12)2(22 maamamma          

        Also the angular momentum of the system is conserved as no torque is 

applied, which gives 2m v×a+m×2v×2a=Iω. This gives ω=v/(5a). 

The system has no translational energy, only the kinetic energy of rotation, which is 

.2

5

3
2

5

230
2

12

2

1
mv

a

v
maI 








   All the statements given above are correct. 

7. A thin uniform circular disc of mass M and radius R is rotating in a horizontal 

plane about its axis passing through its centre and perpendicular to its plane with 

angular velocity ω. Another disc of same dimensions but of mass M/4 is placed 

gently on the first disc coaxially. What is the angular velocity of the system now? 

Answer:  As no torque is applied  2211  II   

  Therefore  5/4

)2

42

12

2

1
(

2

2

1

2

11
2 




 





R
M

MR

MR

I

I
. 

8. You are given different annular discs of same mass and outer radius R but 

different inner radii  r. Draw a plot showing the variation of their moment of 

inertia about an axis passing through their centre of gravity and perpendicular to 

their plane versus  r.   

Answer:  The moment of inertia of the annular disc 
2

)22( rRM
I


 . The plot of I 

versus  ‘r’ is obtained as shown .                        
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9. A thin wire of length L and uniform linear mass density ρ is bent into a circular 

loop with centre O as shown. Find out the moment of inertia of the loop about the 

axis XY

 
Answer:  If m is the mass of the loop and r is its radius, then the moment of 

inertia of the loop about an axis passing through the centre O is 

                              .2

2

1
rmOI   

Using the theorem of parallel axes, its moment of inertia about XY is 

                       
2

2

32 rmrmOII  . 

The mass of the loop is m=ρ L and radius is r=L/2π, therefore 

                        
28

332)
2

(
2

3








LL
LI  . 

10.   The angular velocity of a body changes from 21  to  without applying any 

torque but by changing the moment of inertia about its axis of rotation. What 

would be the ratio of the corresponding radii of gyration? 

 

I 

r 

r=R 

2MR

2

2

1
MR

 O 

 

90 

X 
Y 
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Answer:  If no torque acts, the angular momentum must be conserved, i.e., 

.2211  II   If 21 KandK are the corresponding radii of gyration, then 

2
22

2
11 MKIandKMI  . Thus     2

2
21

2
1

 MKKM  .  This gives 

                

2

1

2

1






K

K
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Rotational Dynamics 

Lesson-5 

5.1 Introduction 

           This lesson extends the study of rotational motion to obtain the expression for 

the kinetic energy of a rotating body and considers, as an application, the mechanics of 

a fly wheel – a device which is commonly used to store rotational energy and has wide 

applications in many instruments. You will also find how, in the case of irregular rigid 

bodies, the expression for the moment of inertia can be generalized to what, in 

mathematical language, is known as a tensor of second rank.  

Objectives 

After studying this lesson you should be able to 

 know how to derive the expression for the kinetic energy of a rigid body rotating 

with angular velocity ω 

 learn the mechanics and use of a flywheel and describe the method of finding its 

moment of inertia 

 show and express the moment of inertia of an irregular body as a tensor of rank 

two  

 

 

5.2 Kinetic Energy of a Rotating Body 

            To obtain the expression for kinetic energy of a rigid body rotating with angular 

velocity ω about the axis AB, we again focus on a particle P of mass  at a distance  

from the axis. The kinetic energy of this particle is 

                      .                                                 (5.1) 

 

 

1m 1r

22
11

2

12
11

2

1
rmvm 
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                               Fig.5.1 

 

The body is made up of a large number of such particles. Therefore, the total kinetic 

energy of the body 

    = the sum of the kinetic energy of all the particles composing the body  

Since every particle is rotating with the same angular velocity hence the total kinetic 

energy in mathematical form is given by, 

  (5.2)
 

This gives the expression for the kinetic energy of a rigid body rotating with angular 

velocity ω in terms of the moment of inertia of the body. Comparing the expressions for 

the kinetic energy in rotational and translational motion, we again find that the moment 

of inertia is the rotational analogue to the mass. 

       In an earlier section, we obtained a relation between angular momentum L of a rigid 

body rotating with angular velocity ω , viz., (cf.,(3.8)), given by L=I ω. Substituting for 

ω in Eq.(5.2), we get 

                Kinetic Energy (K.E) of a rotating body= ,                           (5.3) 

relating it with angular momentum about the same axis. 
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5.2.1Value Addition     Do you know a Flywheel? 

            A flywheel is essentially a heavy wheel having a large amount of inertia with is 

mass mostly concentrated on the rim. It is basically a rotating mechanical device used to 

store rotational energy. Because of having significantly large moment of inertia, they can 

resist changes in rotational speed. The amount of energy stored is directly proportional 

to the square of rotational speed.  Flywheels have wide applications in stationary engines 

and various types of instruments of everyday use. The common uses of a flywheel 

include: 

(i) To provide continuous energy when the energy source is discontinuous; 

(ii) To deliver energy at rates beyond the ability of a continuous energy source; 

(iii) To control the orientation of a mechanical system by transferring the angular 

momentum of the flywheel 

A flywheel is also used in the laboratory to carry out experiment to determine its 

moment of inertia. It is typically made of steel and is mounted on two ball bearings as 
shown in the figure (Fig.5.2). 

                       

 

                                                Fig. 5.2  

A small loop made on one end of a cord is slipped onto a small peg on the axle around 

which the whole length of the cord is wound. At the other end a small mass is attached 

to the cord. The mass is allowed to fall under gravity. As it loses its potential energy, it 
makes the flywheel to rotate and gain kinetic energy.  
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Click on the link below to view some interesting animations on Flywheel 

http://www.animations.physics.unsw.edu.au/jw/rotation.htm 

Credits:  Authored and Presented by Joe Wolfe 

Multimedia Design by George Hatsidimitris   

Laboratories in Waves and Sound by John Smith 

One of the main applications of the Flywheel is as an energy storage device, which is 

increasingly be used in industries like Automobile, Aeronautics and Aerospace, Heavy 

Electrical and Earth moving, etc. The main principle is to use the rotary motion of the 

equipment being used to accelerate the flywheel (rotor) to a very high speed and then 

store the energy in the machinery as rotational energy (potential energy). The 

machinery then extracts this stored energy by converting it into rotational kinetic energy 

thereby slowing down the flywheel to adhere to law of conservation of energy. This cycle 

is repeated again and again and in each such cycle the flywheel helps in conserving and 

reusing the rotational energy. In order to understand this better students are advised to 
visit the following links: 

http://www.youtube.com/watch?v=LC0pHkstuF8   

http://en.wikipedia.org/wiki/Flywheel_energy_storage  

http://www.animations.physics.unsw.edu.au/jw/rotation.htm
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/wolfe.html
http://www.phys.unsw.edu.au/STAFF/GENERAL/hatsidimitris.html
http://www.phys.unsw.edu.au/STAFF/ACADEMIC/smith.html
http://www.youtube.com/watch?v=LC0pHkstuF8
http://en.wikipedia.org/wiki/Flywheel_energy_storage
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The procedure for the determination of the moment of inertia of a flywheel in the 
laboratory can be best described through an example which is given below: 

Description  English: This image shows the main components of a t ypical cylindrical flywheel rotor assembly .   

Date  July 2012   
Source  a rendering from a solid-works model, edited to include labels, in png format 

Previously published: 2012-04-29   

Author  Pjrensburg   
 

Licensing 

I, the copyright holder of this work, hereby publish it under the following licenses: 
Permission is granted to copy, distribute and/or modify this document under the terms of the  

 

GNU Free Documentation License , Version 1.2 or any later version published by the Free Software Foundation; with no Invariant 
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free 

Documentation License.   

 
  This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.    

    

 You are free: 
to share – to copy, distribute and transmit the work 

to remix – to adapt the work 

Under the following conditions: 
attribution – You must attribute the work in the manner specified b y the author or licensor (but not in an y way that suggests that they 

endorse you or your use of the work). 

share alike – If you alter, transform, or build upon this work, y ou may distribute the resulting work only under the same or similar 
license to this one.    
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Example 

         A chord is wound round the horizontal axle of radius 1.5 cm of a flywheel and a 

mass of 2 kg is attached to the free end of the rod. Starting from rest, the mass is 

released from the axle after passing through 100 cm. After the mass is released, the 

flywheel makes 15 turns in 6.0 seconds before coming to rest. Calculate (i) the kinetic 

energy of the mass at the moment of the release; (ii) the moment of inertia of the 
flywheel. 

Solution 

       Let I be the moment of Inertia of the flywheel, v be the velocity acquired by the 

mass falling through height h. Then, according to the law of conservation of energy, 

                                      ,                                   (i) 

where ω is the angular velocity of the flywheel, W is the work done per revolution 

against friction, N is the number of revolutions made by the wheel before the mass gets 

detached from the axle. 

       If the wheel makes n rotations before coming to rest after the mass is detached 

from the axle, work done against friction during the n revolutions, i.e., n w must be 

equal to the kinetic energy of rotations of the wheel, which has been used up doing this 

work. Thus 

                           . 

Substituting  for W in the expression (i), we have 

   Or       

             

From the above equation, we get 

                                          

where v=r ω, and r is the radius of the axle. As the wheel makes n rotations, i.e., it 

describes an angle of 2π n in time t, its average angular velocity is equal to 2 π n/t. This  

should be equal to the average angular velocity of the wheel , viz., ω/2. Thus ω=4π n/t. 

Substituting this for ω in the above equation, we get 
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Let us now substitute the values given in the question in this equation to determine the 

moment of inertia of the flywheel. 

m=2.0 kg;  h= 1 m;  r=1.5 ;    n=15 and t=6 s. To find N, we use 

         N=  

I=  

Kinetic Energy of the mass at the time of release from the axle=

 

 

5.3  Moment of Inertia of an Irregular Body – A Tensor of Rank Two  

               Suppose we consider a rigid body having an irregular shape like that of a 

potato. Any such irregular body has three mutually perpendicular axes passing through 

its centre of mass. Let the moments of inertia of the body along these axes be different. 

These axes are called the principal axes of the body. They have an important 

property that if the body is rotating about one of them, its angular momentum 

is in the same direction as the angular velocity. For a body having axes of 

symmetry, the principal axes will be along the symmetry axes. 

         Let us take the x-, y-, and z-axes along the principal axes and suppose the 

corresponding principal moments of inertia are represented by  ( you will 

soon realize why the moment of inertia is designated here by the subscripts xx, etc.). 

Now, if the body is rotating with angular velocity , we resolve it into components 

    along x, y and z axes as is shown in Fig.(5.3). 
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          Fig. 5.3   An irregular body rotating about an axis where the angular velocity  

                                   vector ω is not along the angular velocity vector  L. 

 

 Since  now represent the x, y and z components of the 

angular momentum, we can express the angular momentum of the body as 

                                                                 (5.4) 

The kinetic energy of rotation is 

                                

                                (5.5)

 

The situation that we discussed above is yet not a general one. We can have, in 

principle, an irregular body whose x- component of angular momentum is not only 

proportional to but also proportional to the components . If the 

moments of inertia of the body associated with the components are 

represented by , then the x- component of angular momentum, can be 

written as 
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                                                                      (5.6) 

Similar expressions for the components of the y- and z- components of the 

angular momentum would be 

                         
                                           (5.7)

 

We have thus seen that the moment of inertia of a body can, in general, have nine 

different components. In mathematical terms, such a quantity is known as a tensor of 

second rank in three dimensions. We can thus conclude from the above study that 

moment of inertia of an irregular body is, in general, a second rank tensor in three 

dimensions. You will have the occasion to encounter many physical quantities of this 

nature from different branches of physics,  which, from mathematical standpoint, should 

be regarded not as scalars or vectors but as tensors. 

       In tensor notation, the kinetic energy of a rotating irregular body can be expressed 

as 

                                        ,                                          (5.8) 

where the subscripts (i, j), each of which stand for x, y, z have to be summed over. 

 

Summary 

          In this lesson, you learn 

 to deduce the expression for the kinetic energy of a rotating body 

 how rotational kinetic energy is stored in a Flywheel and how its moment of 

inertia can be determined 

 that moment of inertia of an irregular body can, in general, be represented by a 

tensor of rank two. 

 

Exercise / Questions : 

1. Kinetic energy of a rotating body having angular momentum L and momentum of 

inertia I is given by 

(a)   L I/2                (b)   
2

2

1
LI                   (c)  L /(2 I)                   (d)  

I

L

2

2
 

Answer:   KE= 
I

L
KEgetwengsubstitutibyILceI

2

2
,,sin;2

2

1
  . 

Therefore correct choice is (d). 
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2. Why does a flywheel have a significantly large moment of inertia? 

Answer:     In order to resist changes in rotational speed. 

3. Under what condition a flywheel does not have angular momentum L


   along the 

angular velocity vector  


? 

Answer :    When it is fixed to a shaft in a lopsided manner and the plane of the 

wheel is not perpendicular to the axis of rotation. 

4. A flywheel of mass 500 kg and 1 m diameter revolves about its axis. Its 

frequency of revolution is increased by 18 in 5 s. Find the torque applied. 

Answer:  The torque T= I (dω /dt). 
25.622)5.0()500(

2

12

2

1
mkgMRI  .  

Now d ω/dt=2π×18/5=7.2 π. Thus  T=62.5×7.2π= mN  3104.1 . 

5. Write two common uses of a flywheel. 

Answer:  (i) to provide continuous energy; 

              (ii) to control the orientation of a mechanical system by transferring 

angular momentum of the flywheel. 

6. What is the significance of the principal axes of a rigid irregular body? 

Answer:  The principal axes of a body have a property that if the body is rotating 

about one of them, its angular momentum is in the same direction as the angular 

velocity. 

7. When an irregular body is rotating about an axis where the angular velocity 

vector is not along the angular momentum vector, what would be the expression 

for the angular momentum L

 in terms of the components of the angular velocity 

vector? Hence write the expression for its kinetic energy. 

Answer: We resolve the angular velocity vector 


into the three components x ,

zandy  , along the three mutually perpendicular principal axes, say, x-, y- and z- 

passing through its centre of mass. If zzIandyyIxxI ,  denote the three different 

moments of inertia along these axes, then the components of the angular 

momentum, zzzIzLandyyyIyLxxxIxL   ,  so that the angular 

momentum vector 
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                    kzzzLjyyyLixxxIL ˆˆˆ  


. 

Now, since      kzjyix
ˆˆˆ  


      and kinetic energy KE = 


.

2

1
L , therefore 

              )222(
2

1
zIzzyyyIxxxIKE   . 

8. Why is the moment of inertia of an irregular rigid  body regarded as a tensor and 

not a simple scalar? 

Answer: This is because in the case of an irregular body the x-component of the 

angular momentum of the body may not depend just on the x-component of the 

angular velocity but could depend on the y- and z- components of the angular 

velocity also. So for each component of the angular velocity, the moment of inertia 

about the x-axis may be different for each component of angular momentum vector. 
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Rotational Dynamics 

Lesson-6 

6.1 Introduction 

            This lesson describes the mechanics of rolling bodies. Specifically, it discusses 

some basic features involving the motion of spherically symmetric objects (a) rolling on 

a plane surface, (b) rolling down an inclined plane without slipping with no loss of energy 

due to friction and (c) rolling down an inclined plane without slipping of a cylindrical 

object  taking the effect of friction into account . 

Objectives 

      After studying this lesson you should be able to 

 learn the motion of bodies having circular symmetry rolling on a plane surface  

 show that kinetic energy of rolling consists of two parts: one due to rotational 

motion and the other of translational  motion 

 find out the factors which determine the acceleration of a body rolling down an 

inclined plane without slipping and with no loss of energy due to friction 

 learn the role of friction when a cylinder rolls down an inclined plane without 

slipping 

 

6.2 Rolling Bodies 

         When an object with circular symmetry, as for instance, a sphere, a cylinder, a 

disc or a wheel, rolls on a plane surface its motion is a combination of translation and 

rotation. Consider the rolling motion of a circular object as shown in the Fig.6.1. 
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            Fig. 6.1 Motion of a circular disc rolling on a plane surface can be viewed as 

comprising of two parts:  translational and rotational motions. 

 Notice that at any instant, the axis normal to the diagram through the point of contact P 

is the axis of rotation. Let the speed of the centre of mass be V (relative to the observer 

fixed on the surface). Then the instantaneous angular speed about the axis passing 

through P is ω=V/R, where R is the radius of the body. Therefore, at that instant, all the 

particles of the rigid body are moving with the same angular speed ω about the axis 

through P and the motion is pure rotation. [This, however, is not true about the linear 

speeds. For example, at an instant when the centre of mass is moving with linear speed 

V=R ω, the point P is at rest, point O has a speed V and the highest point of 

circumference has the speed 2V.] 

  Thus the kinetic energy(K.E) corresponding to pure rotation=            (6.1) 

 

             

where represents the moment of inertia about the axis through P. 

Using the theorem of parallel axis 

2

2

1
PI

PI
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                                ,                                                       (6.2) 

where  is the moment of inertia of the body of mass M about a parallel axs passing 

through c.m O. Therefore, kinetic energy, 

                            KE=              (6.3) 

Thus, the kinetic energy of rolling motion can be expressed in two parts, one part 

corresponding to the rotational and the other to the translational motion. 

6.2.1 Value Addition
 

                Visit the following website to see an animation for free rolling of a circular 

object. Observe the velocity vectors of a point on the rim of the rolling body. 

http://www.animations.physics.unsw.edu.au/jw/rolling.htm  

http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=141.0  

The following video demostrates the three cases when the velocity due to translation is 

less than, equal to and greater than the velocity of rotation and then illustrates the 

condition when the body rolls without slipping. 

http://www.youtube.com/watch?v=s1qJrNfOCHs  

<iframe width="560" height="315" src="//www.youtube.com/embed/s1qJrNfOCHs" 

frameborder="0" allowfullscreen></iframe>  

 

 

Exercise 

              A solid sphere of mass 500 gm and radius 5 cm rolls without sliding with a 

uniform velocity of 10 cm/s along a straight line on a smooth horizontal table. Calculate 

its total energy. 

Solution 

              Total kinetic Energy=  

Now, given:  Mass of the sphere=500gm;  Radius, R=5cm;  V=10 cm/s. We also know 

that moment of inertia of the sphere is . The above expression reduces to 

                      

6.3  Motion of a body Rolling down an inclined Plane 

          When a body rolls down an inclined plane without slipping, it acquires both 

translatory and rotatory motions. As the body rolls down, it looses its potential energy, 

due to vertical descent. It simultaneously acquires linear and angular velocities. As a 

2MRcmIPI 

cmI

2

2

12

2

122

2

12

2

1
VMcmIRMcmI  

2

2

1

2

2

2

12

2

12

2

1
VM

R

V
cmIVMcmI  

2

5

2
RM

joulesVM 5105.3
5

72)210(5.0
2

1
)

5

2
1(2

2

1 

http://www.animations.physics.unsw.edu.au/jw/rolling.htm
http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=141.0
http://www.youtube.com/watch?v=s1qJrNfOCHs
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result it gains kinetic energy of translation and rotation. If there is no loss of energy due 

to friction, the loss of potential energy must be equal to the gain in kinetic energy.  

            What are the factors which determine the acceleration of the boy rolling down 

an inclined plane? To find this out, let us consider a body of mass M and radius R rolling 

down a plane inclined at an angle θ to the horizontal (See Fig.6.2). 

 

 

                               

                  Fig. 6.2 A body rolling down an inclined plane 

 Let the body acquire angular speed ω and let linear speed acquired by the centre of 

mass after covering a distance s along the inclined plane be V. 

Now loss of potential energy in travelling a vertical height, h, PE=M g h 

Gain in kinetic energy (KE)= 

 

,           (6.5) 

where k is the radius of gyration about an axis through the centre of mass and parallel 

to the plane. 

Applying the law of conservation of energy 

                                        

                                            (6.6)

 

This gives 

                                  .                                 (6.7)  

the centre of mass of the body acquires an acceleration ‘a’ on covering the distance s, 

then . Using the relation Eq.(6.7), we get 
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                                                           (6.8) 

This Eq.(6.8) is an important one in so far as it tells us that for a given inclination, 

acceleration acquired by a rolling body is independent of its mass; it is inversely 

proportional to the factor . For two bodies having identical shapes but of 

different moment of inertia, when allowed to roll down an inclined plane from the same 

height simultaneously, it is possible to find with the help of Eq.(6.8) which one would 

acquire greater acceleration and hence would reach the ground earlier. 

 

 

 

Question Number Type of question 

1 Objective 

 

Question\ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Justification/ Feedback for the correct answer 

The acceleration down an inclined plane of a rolling ring, disc and sphere are 

respectively (1/2) g sin θ, (2/3) g sin θ, (5/7) g sin θ 

Note that the moment of inertia of the ring is , of disc is and of the 

sphere is  

  

2/21

)sin(

Rk

g
a






)2/21( Rk

2RM
2)2/1( MR

2)5/2( MR

 

Correct choice 

a) false  

b) False 

c) False 

d) True 

 

A ring,  a circular disc and a sphere of the same radius and mass roll 

down an inclined plane from the same height h. Which of the three 

reaches the ground (i) first and (ii) last? 

(a) ring reaches first and  the disc last 

(b) disc reaches first and the sphere last 

(c) sphere reaches first and disc last 

(d) sphere reaches first and the ring last 
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Exercise 

     A solid disc (i) rolls (ii) slides from rest down an inclined plane. Neglecting friction, 

compare the velocities in the two cases when the disc reaches the bottom of incline. 

Solution 

      The moment of inertia of the disc is . Using the expression (6.8) for 

acceleration 

                   

 

If s is the distance of the inclined plane, then the velocity 

                             . 

In the case of sliding, the disc acquires the acceleration 

                                 a’=g sin(θ).  

Therefore,                 

Comparing the two, we get        . 

 

6.4   Rolling of a Cylinder without Slipping down an Inclined Plane 

         ( force of friction included) 

                  Let us describe the motion of a cylinder when it rolls down an inclined plane 

without slipping. The condition for rolling without slipping is that at each instant, 

the line of contact is momentarily at rest and the cylinder is rotating about it as 

axis. 

       Consider a cylinder of mass M, radius R rolling down a plane inclined at angle θ to 

the horizontal. The figure (Fig.(6.3)) shows a right cross section of the cylinder. What 

are the forces acting on the cylinder while rolling? These are: 

(a) The weight M g of the cylinder acting vertically downward through the centre of 

mass, 

(b) The normal force N acting at the point of contact P between the cylinder and the 

plane; and 

(c) The force of friction f at P, acting tangentially upwards and parallel to the plane. 

 

2)2/1( MR
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          Fig. 6.3 Rolling of a cylinder without slipping down an inclined plane including the 

effect of friction. 

                                            

Let the instantaneous angular velocity of rotation about an axis passing through P be ω, 

which is the same as for the rotation about the horizontal axis through the centre of 

mass. Then the linear velocity V and the acceleration a of the centre of mass of the  

cylinder rolling down the inclined plane are 

                             V=R ω              and      a=R  ,                                   (6.9) 

where  is the angular acceleration of the cylinder down the plane. 

Since there is no motion in a direction normal to the plane, we have 

                                          N=M g cos(θ)                                                  (6.10) 

Now, using Newton’s second law for the linear motion of the centre of mass, the net 

force on the cylinder rolling down is 

                                                          (6.11) 

In terms of the torque T acting on the rolling cylinder we know 

                   ,                                                              (6.12) 

where I is the moment of inertia of the solid cylinder about the axis of symmetry, 

through the centre of mass, given by  . 

    Note from Eq.(6.12), the torque T acting on the cylinder is being produced by the 

force of friction, i.e., 

fgM

RM
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                                    ,                                                              (6.13) 

Using the relation  in Eq.(6.8), the linear acceleration ‘a’ of the rotating 

cylinder is given by 

                                       

                    or 
 

 Since  , we get         a=2(g sin(θ))/3                                     (6.14) 

                 and                        f=( M g sin(θ))/3                                          (6.15) 

From Eq.(6.14), it is clear that the linear acceleration ‘a’ of the solid cylinder rolling 

down the inclined plane is less than g- acceleration due to gravity. Also, . Eq.(6.15) 

shows that  the force of friction f < Mg, i.e., the weight of the cylinder. Expressing the 

force of friction in terms of the coefficient of static friction,viz., 

                                           
,
 

and using Eq.(6.15)  for f and Eq.(6.10) for N, we get 

                                                                                               (6.16) 

           The effect of moment of inertia on the linear acceleration a of the cylinder and 

the force of friction f can also be easily understood. Recall that if the cylinder were 

hollow, its moment of inertia would be, . The net effect on a and f would then 

be that, instead of the factors (2/3) and (1/3) appearing in Eqs.(6.14) and (6.15), we 

would simply have the factor of  (1 / 2)  in each of these equations.    

6.4.1  Value Addition 

It would be interesting to visit the following website for animations on rolling of bodies 

down an inclined plane and get some glimpses of Galileo’s experiments on them  

http://www.animations.physics.unsw.edu.au/jw/rotation.htm#rolling      

http://www.youtube.com/watch?v=MAvPlHAfGbQ  

http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=1025.msg3758#msg3758  

http://physics-animations.com/Physics/English/angl_txt.htm 
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http://www.animations.physics.unsw.edu.au/jw/rotation.htm#rolling
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http://www.youtube.com/watch?v=MAvPlHAfGbQ 

Credit: By Dr. Michael R. Gallis 

Penn State Schuylkill 

Pennsylvania State University 

mrg3@psu.edu  

Summary 

         In this lesson, you learn  

 the mechanics of rolling bodies on a plane surface 

 to describe the motion of a body rolling down an inclined plane 

 to analyze the rolling motion of a cylinder without slipping down an inclined plane 

( with force of friction) 

 

 

Exercises/ Questions: 

1. A disc of mass M is rolling with angular speed ω on a horizontal plane as shown 

in the figure.. What would be the magnitude of angular momentum of the disc 

about the origin?  

http://www.youtube.com/watch?v=MAvPlHAfGbQ
mailto:mrg3@psu.edu
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Answer:  Let c denote the centre of the disc. If cL  is the angular momentum of the 

didc about C and cvMcp  is the linear momentum of the centre of mass of the disc, 

the angular momentum about the origin O is 

                    cpcRcLoL


 .  Its magnitude is given by 

                     sincMvcRcIoL  .  

Now     RcvandcRRandMRcI  /sin2

2

1
. 

Substituting these, we get  2

2

3
MRLo   

 

x 

y 

o 

M 

R 

ω 
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2. A hollow sphere of mass M and radius R is initially at rest on a horizontal rough 

surface. It moves under the action of a constant horizontal force F as shown in 

the figure.  

           Does the frictional force between the sphere and the surface retard the 

motion of the sphere or make the sphere move faster? 

Answer: If the force is applied above the centre of mass, the torque due to frictional 

force tends to rotate the sphere faster. Hence in this case, frictional force acts in the 

direction of motion and makes the sphere move faster. 

3. In the question given above, what would be the linear acceleration of the 

sphere? 

Answer:     Let a and α be the linear and angular acceleration of the sphere. For 

translational motion         F + f=M a     (i), where f is the frictional force. 

The magnitude of the net torque = F R – f R= I α =I a /R. For a hollow sphere,  

2

3

2
MRI   . Therefore,     F R-f R= 

R

a
MR 2

3

2
 giving       F – f = 2 M a / 3    (ii). 

From eqns. (i) and (ii), we get  a= 6 F / 5 M. 

4. In question 2, obtain the relation between the frictional force and the force 

applied. 

Answer :  From eqns. (i) and (ii) obtained above, we find f= M a / 6= F/5. 

5. A small sphere rolls down without slipping from the top of a track in a vertical 

plane. The track has an elevated section and a horizontal part. The horizontal 

part is 0.7 m above the ground and the top of the track is 3.5 m above the 

 

F 



Rotational Dynamics / Mechanics-VI 

Institute of Lifelong Learning, University of Delhi 

ground ( see figure). Taking the value of g=10 m /
2s  , find the horizontal speed 

when the sphere reaches point A.  

 

                  

Answer:  The loss in potential energy when the sphere moves from the top of the 

track to the point A = gain in total ( translational+ rotational) kinetic energy, i.e., 

           
2

2

12

2

1
)( IMvhHMg   .  Now  RvandMRI /2
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2
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ghH
vMvMvMvhHMg  

Substituting the values of g, H and h, we get v=5.0 m/ s. 

6. In the above question, what would be the time taken by the sphere to fall 

through h=1.25 m? 

Answer:  The time of flight, s
g

h
t 5.0

2
 . 

7. In question 5, find the distance covered on the ground with respect to the point 

B. 

Answer:  horizontal distance covered is v t=5.0×0.5=2.5 m. 

 

 

h=1.25 m 

H=3.0 m 
A 

B 
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8. In Q.5, after the sphere leaves the point A, during its motion as a projectile, 

would it stop rotating or continue to rotate as about its centre of mass? 

Answer: During its flight as a projectile from point A to the point it hits the ground, 

since there is no external torque acting on it, the angular momentum remains 

unchanged and therefore the sphere will continue to rotate about the centre of 

mass. 

9. A uniform disc of radius R is rolling (without slipping) on a horizontal surface with an 

angular speed ω. As shown in the figure, points A and C are located on the rim and 

point B is at a distance R/2 from the centre O. During rolling, the points A, B, and C 

lie on the vertical diameter at a certain instant of time. If cvandBvAv ,,  are the 

linear speeds of points A, B and C respectively, then which one of the following is 

correct:             

(1)   cvBvAv            (2) cvBvAv               (3)  BvCvAv
3

4
,0      or 

(4)     BvCvAv 2,0   
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Answer:  The disc is rolling about the point O. Thus the axis of rotation passes 

through the point A and is perpendicular to the plane of the disc. From the relation 

v=r ω, r=0.   Therefore, BvRCvRABBvAv
3

4
2,

2

3
)(,0   . 

Correct choice is (3). 

10.     A sphere rolls down an inclined plane without slipping. What fraction of its 

total energy is rotational? 

Answer:  Rotational kinetic energy, ER=
2)2

5

2
(

2

1
2/2  MRI    

                  Translational Kinetic Energy 
22

2

12

2

1
MRvM   

          Total Energy= Rotational +Translational=
22

10

7
MR  

          Rotational Kinetic Energy=(2/7) of total kinetic energy 
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Objective 

 Introduce Newton’s Universal Law of Gravitation 
 Apply Superposition Principle 
 To be able to calculate gravitational field at a point due to point 

mass and rigid bodies. 
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1.1 NEWTON’S LAW OF GRAVITATION 

 

INTRODUCTION 

• Among other great accomplishments, Sir Isaac Newton is also credited for his 
theory of gravitation. Newton’s Universal Law of Gravitation was published in 
his book “Principia” in the year 1687. 

• Gravity is the most familiar fundamental force.  
• States that: 

The force on a point mass M due to another point mass m, separated 
by a distance, r is given by: 
   
  𝐅 = −GMm

r𝟐
𝐫�                      (1.1) 

• The negative sign indicates that force is attractive.  
• The force is along the line joining the two masses. 
• G is known as the universal gravitation constant with value 6.67X10-11 m2kg-

1s-2. Value of G determined was by Henry Cavendish in 1778, 100 years later. 
He also confirmed Newton’s hypothesis. 

 

1.2 FORCE BETWEEN TWO MASSES 

 

Figure 1.1 

Consider figure 1.1. If m1 and m2 are two masses distance r apart, then according to   
Equation (1.1) the force exerted by m1 on m2 is: 

F12 =  −
Gm1m2

r12
2 r�12 

Where r=r12 is the distance from m1 to m2. Here the negative sign indicates that the 
direction of the force is opposite to the direction of r12 as the force acting on m2 due 
to m1 is directed towards m1 gravitational force being attractive in nature. Similarly, 
the force by m2 on m1 is: 

𝐅21 =  − Gm1m2
r21
2 r�21, 

Where r=r21 is distance from m2 to m1. Now since r21=-r12, F12=-F21. Hence the 
force of gravitation obeys Newton’s Third Law. 
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• The law can be generalized for extended bodies also. The distance r between 
the two bodies can be calculated using integral calculus. This technique was 
also developed by Newton. 

 
Brain Feed 

The following link allows you to calculate gravitational 
force between to masses. 

http://phet.colorado.edu/en/simulation/gravity-force-lab 

Embed an image that will launch the simulation when 
clicked 

<div style="position: relative; width: 300px; height: 
226px;"><a href="http://phet.colorado.edu/sims/force-law-
lab/gravity-force-lab_en.jnlp" style="text-decoration: 
none;"><img src="http://phet.colorado.edu/sims/force-law-
lab/gravity-force-lab-screenshot.png" alt="Gravity Force Lab" 
style="border: none;" width="300" height="226"/><div 
style="position: absolute; width: 200px; height: 80px; left: 
50px; top: 73px; background-color: #FFF; opacity: 0.6; 
filter: alpha(opacity = 60);"></div><table style="position: 
absolute; width: 200px; height: 80px; left: 50px; top: 
73px;"><tr><td style="text-align: center; color: #000; font-
size: 24px; font-family: Arial,sans-serif;">Click to 
Run</td></tr></table></a></div> 

 

Use this HTML code to display a screenshot with the words 
"Click to Run". 

CREDITS 

Design Team Third-party Libraries   
 Sam Reid 
 Noah Podolefsky 
 Carl Wieman 
 Trish Loeblein 

 Piccolo2D 
 Scala 

 


 

 

http://phet.colorado.edu/en/simulation/gravity-force-lab�


 

Institute of Lifelong  Learning, University of Delhi 

1.3 SUPERPOSITION PRINCIPLE 

When many particles interact with each other then total gravitational force is 
superposition, or vector sum of all the forces: 

𝐅 = 𝐅𝟏 + 𝐅𝟐 + 𝐅𝟑 + ⋯ = ∑ 𝐅𝐧𝐧
𝐢=𝟏                       (1.2) 

  

 

 

 

 

Figure 1.2 
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1.4 GRAVITATIONAL FIELD 

• Point masses are hypothetical. In reality all bodies are extended, like earth is 
almost spherical in shape. 

• We can extend the above theorem to rigid bodies. 

𝐅 ∝
1
r2

  

F ∝
mMe

r2  

 

Brain Feed 

Newton wanted to compare magnitude of gravitational force of earth 

on moon and objects on earth. Acceleration of bodies due to force of gravity 

on earth is g=9.86 ms-2. 

 Centripetal acceleration of moon, ar  = v2/r=0.00272m/s2. Therefore, the 

ratio of ar/g=1/3600. That is the acceleration of moon is 1
3600

 times the 

acceleration due to gravity on earth. 

Now earth’s radius is 6380 km and distance of moon from earth is 384,000 

km.   The ratio of square the distance of moon from earth to radius of earth 

is 1
3600

.  

Hence, Newton concluded that force of gravitation, 

 Newton observed that the force also depended directly on mass of 

the body.  But according to Newton’s third law the force should also depend 

on mass of earth. 

Therefore, Newton concluded that 

 
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• In this section we will show that gravitational field due to a spherical shell is 
same as that due to a point mass. We will also calculate field due to a solid 
sphere. 
 

1.4.1 DUE TO A HOLLOW SPHERICAL SHELL 

Consider, Figure 1.3a, a spherical shell of mass, M and radius, R at a distance r from 
a mass m. 

 

 

Figure 1.3a 

Mass per unit area of the shell is 

𝜌 = 𝑀
𝐴

= 𝑀
4𝜋𝑅2

                                   (1.3) 

Let us consider a ring of radius R sinθ. All the points on this ring are at equal 
distance, s from the mass m. The area of this ring is 

dA = 2πRsinθ(Rθ)                              (1.4) 

The mass of this ring, from Equations 1.3 and 1.4 is equal to, 

     dM = 2πRsinθ(Rdθ) 𝑀
4𝜋𝑅2

                     (1.5) 

The force due to this element on mass m, 

𝐝𝐅 = −GmdM
s2

cosα = −GmMsin θdθ
2s2

cosα                    (1.6) 

Using relations 

s2 = R2 + r2 − 2Rr cos θ 

R2 = s2 + r2 − 2sr cosα 

We obtain 

    sinθdθ = s
rR

ds                      (1.7) 
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 and 

                   cos𝛼 = 𝑟2+𝑠2−𝑅2

2𝑠𝑅
                        (1.8) 

The total force on m can then be calculated by using Equations (1.7) and (1.8) and 
integrating Equation (1.6), 

F = −GmM
2 ∫ �r

2−R2+s2

2sr
� 1
s2

s
rR

dsr+R
r−R   

F = −GmM
4r2R ∫ �r

2−R2+s2

s2
�dsr+R

r−R          

F = −GmM
4r2R ∫ �r

2−R2

s2
+ 1� dsr+R

r−R   

F = −GmM
4r2R

�(r2 − R2)∫ � 1
s2
� dsr+R

r−R + ∫ dsr+R
r−R �  

F = −GmM
4r2R

�(r2 − R2) �− 1
s
�
r−R

r+R
+ �s|r−Rr+R�  

F = −  GMm
r2

  

Hence the field at point P is 

                      E = F
m

= −GM
r2

         (1.9) 

 

• From Equation (1.9), we see that force due to a spherical shell outside is 
same as that of a point mass. 

• Similarly we can show that force due to solid sphere is also same as if the 
mass was concentrated at the center of the sphere.  

 

 

   

 Q What will be force at the center of the spherical shell? 

 Ans. The Force at the center of the spherical shell will be zero.  

We can verify this by considering Figure 1.3b. Here for an object having mass m 
lying at any point P inside the spherical shell such that the distance of the mass m 
from the center of the spherical shell is r. Closer examination will reveal that 
equations (1.3) to (1.8) will remain unchanged even for this case i.e. for particle 
inside the spherical shell. Only change will come in the limits for calculating the 
gravitational force due to the spherical shell since here R>r hence the limits will be 
defined as (R-r) to (R+r). Using these limits in the computation of the gravitational 
force one obtains  

F = −GmM
2 ∫ �r

2−R2+s2

2sr
� 1
s2

s
rR

dsR+r
R−r   

??? 
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F = −GmM
4r2R ∫ �r

2−R2+s2

s2
�dsR+r

R−r          

F = −GmM
4r2R ∫ �r

2−R2

s2
+ 1� dsR+r

R−r   

F = −GmM
4r2R

�(r2 − R2)∫ � 1
s2
� dsR+r

R−r + ∫ dsR+r
R−r �  

F = −GmM
4r2R

�(r2 − R2) �− 1
s
�
R−r

R+r
+ �s|R−rR+r�  

F = 0  

Hence the field at point P is 

                      E = F
m

= 0         (1.10) 

Thus the gravitational force and field both will be zero for a particle lying inside the 
spherical shell. 

  

 

Figure 1.4 

1.4.2 DUE TO A SPHERE 

Consider a solid sphere of mass M and radius R. To calculate force on a mass m at 
point P outside this solid sphere, consider the sphere to be made up of spherical 
shells of mass dM, as shown in Figure 1.5a. 
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     Figure 1.5a 

Then force at a distance r from the center of the shell on m is given by, 

dF =
−GmdM

r2
 

where the mass of the shell of radius x and thickness dx is given by 

dM =
M

4πR3

3

(4πx2dx) =
3M
R3 x2dx 

Then the total force is obtained by integrating the above equation over all such shells 
from x=0 to x=R and this gives 

F = −
3GmM
r2R3 � x2dx

R

0
= −

3GmM
r2R3

�x
3

3
�
0

R

 

                                                    F = −GmM
r2

      

Hence field at point P is 

                                        E = F
m

= −GM
r2

          (1.11) 

 

Inside the solid sphere: 

There are various ways to calculate force or field inside the solid sphere. Using 
vectors to do the calculation is very tedious. Two easy approaches to the problem 
are using Gauss’ Law or variation in value of acceleration due to gravity, g. We shall 
discuss here using the formula for varying value of g. The formula has been derived 
in the next lesson. 
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 Figure 1.5b 

Refer to Figure 1.5b. 

The value of acceleration due to gravity at a depth d, inside a solid sphere is given as 

                            g′ = g0 �1 − d
R
�      (1.12) 

Where g0=GM/R2. 

g′ =
GM
R2 �

R − d
R

� 

But R-d=r 

     F=mg’ 

     F = GMmr
R3

 (1.13) 

 

The variation in gravitational field with r for a solid sphere is shown in Figure (1.6)  
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Figure 1.6 

SUMMARY: 

1. Discussed Newton’s Law of gravitation 

𝐅 = −
GMm

r𝟐
𝐫� 

2. Newton’s Law of gravitation obeys Superposition Principle 
3. Calculated Field due to point masses and Rigid bodies 
4. Field due to a spherical shell of radius R and mass M is given as 

E = −GM
r2

         r>R 

  =−GM
R2

          r=R 

   = 0           r<R 
5. Field due to solid sphere of radius R and mass M is given as  

           E = −GM
r2

      r > 𝑅 

             =  −GM
R2

       r = R 

             = −GMr
R3

       r < 𝑅 

 

 



 

Institute of Lifelong  Learning, University of Delhi 

MULTIPLE CHOICE QUESTIONS: 

1. According to Newton’s Law of Gravitation, the force of gravity between two 
masses is directly proportional to the 
i. total mass and inversely proportional to the distance between them. 
ii. Product of masses and inversely proportional to the separation. 
iii. Distance between them and inversely proportional to their masses. 
iv. Product of masses and inversely proportional to square of distance 

between them. 
2. If the separation between the masses is doubled, then the gravitational force 

between them is  
i. Doubled 
ii. Remains same  
iii. Is halved 
iv. In one-fourth of its original value 

3. How does the force of gravity on an astronaut orbiting in the space shuttle compare 
with the force of gravity on the same astronaut when she is standing on the earth's 
surface? 
i. It is same at both places. 
ii. Is less in the space shuttle 
iii. There is no gravitational force in orbit because the astronaut is weightless. 
iv. Not enough information was given to answer the question 

 
4. The force of gravity on the moon is 1/6 as large as on the earth. How does free-fall 

acceleration on the moon compare with free-fall acceleration on the earth? Free-fall 
acceleration will be 
i. the same on the earth and moon. 
ii. 6 times larger on the moon. 
iii. 6 times larger on the moon. 
iv.  1/6 as large on the moon. 
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Objective 

 Concept of acceleration due to gravity 
 Variation in value of g with altitude, rotation of earth 
 Difference between inertial mass and gravitational mass 
 To show gravitational force is a conservative force 
 Gravitational potential due to hollow spherical shell and solid 

sphere 
 Idea of escape velocity
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2.1 ACCELERATION DUE TO GRAVITY 

• According to Newton’s Second Law, F = ma. If F is gravitational force due to 
earth on mass m, then 

.              (2.1) 

• This gives . This is known as acceleration due to gravity and is denoted 

by g. 
• It’s value is constant on earth’s surface and is equal to 9.86 m/s2. 
• Slightly different from it’s true value. Actual value of g increases from equator to 

pole because of  
1. Flattening of earth on poles. 
2. Rotation of earth. 

 
2.2 CHANGE OF VALUE OF g  

2.2.1 WITH ALTITUDE: 

The value of acceleration due to gravity, g, changes with altitude above the 
surface of the earth, although the change is very small. The value of g as a 
function of r, is given by 
 

   (2.2) 

where Me is the mass of the earth. Thus the change in the value of g, , as the 
altitude above the surface of the earth is increased is given by 

  (2.3) 

Where r is the distance from the center of earth to the point on the surface of 
the earth where the value of g is being calculated, i.e. the radius of the earth 
and Δr is the change in value of r, i.e. the altitude above the surface of the earth 
at which the value of g is desired to be determined. Then dividing equation (2.3) 
by equation (2.2), 

                                        (2.4)  

From equation (2.4) it is evident that the value of g decreases with increase in 
altitude above the surface of the earth as denoted by the negative sign. 
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 
Brain Feed 

Since the value of acceleration due to gravity and atmospheric pressure 
both decrease with increase in altitude from the surface of the earth 
hence it appears that there is a linear relation between the two. 
However on closer examination it turns out that though the two 
quantities are related but there is no direct linear relation between the 
two. At the surface of the earth the mass and hence weight of the 
entire atmosphere (air) is above the surface hence the atmospheric 
pressure is maximum. However as we move up more and more 
atmosphere (air) is now below the altitude under consideration hence 
the effective weight above the altitude has reduced leading to a 
reduced value of the atmospheric pressure. Since the value of 
acceleration due to gravity has also reduced so it also contributes to a 
reduction in the value of atmospheric pressure. The relation between 
atmospheric pressure and acceleration due to gravity is given as 

 

Parameter Description Value 

p0 
sea level standard atmospheric 
pressure 

101325 Pa 

L temperature lapse rate 0.0065 K/m 
T0 sea level standard temperature 288.15 K 

g 
Earth-surface gravitational 
acceleration 

9.80665 m/s2 

M molar mass of dry air 
0.0289644 kg/

mol 

R universal gas constant 
8.31447 

J/(mol•K) 



 
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2.2.2  DUE TO ROTATION: 
Consider the following figure. 
 

 
Figure 2.1 
Let us assume earth to be a sphere of mass M and radius R. Consider a point 
mass m at P, latitude φ, on the surface of earth. In the absence of earth’s 
rotation, the force of gravity on mass m is mg acting along OP. If we consider 
the rotation of earth with a small angular velocity, ω, then mass m is rotating in 
a circle of radius r=Rcos(φ). Then centrifugal force acting on m is  

 
              (2.5) 

 
Now consider parallelogram PABO. Here the gravitational force at the point P is 
given by mg where PO denotes the direction, the centrifugal force is given by 
mω2Rcosφ along the direction PA. Thus the resultant force acting on the particle 
at P is obtained using triangle law of vectors where, PO=mg, PB=mg’ and 
PA=mω2Rcosφ , 
 

 
 

      (2.6) 

PB denotes the apparent gravitational force acting on the particle due to the 
rotation of the earth.  

Now ω≈10-4, ω-4 is very small and hence neglecting the term, we get 

 
 
Binomially expanding, 
 

,                    (2.7) 
 
Where  is the effective value of g. 
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• At the equator, φ=0°: 
 

 
• On the poles, φ=90°: 

 
 

• Table 1 gives the value of g at various places. 
 
Table 1 

Place Latitude Altitude "g" in m/s2 

North Pole 90o 0m 9.832 

Green Land 70o 20m 9.825 

Brussels 51o 102m 9.811 

New York  41o 38m 9.803 

Denver 40o 1638m 9.796 

Canal Zone 9o 6m 9.782 

Java 6oSouth 7m 9.782 

New Zealand 37oSouth 3m 9.800 
 

 

 

 

 

Q We can see from the above table that value of g at the poles is slightly different from 
the true value as predicted by Equation (16). What is the reason? 

Ans This is because of flattening of earth at the poles.  While deriving the equation, we 
had assumed that earth is a perfect sphere. 

 

2.3 Motion in a uniform Gravitational Field 

2.3.1 Projectile Motion 

P1. Describe the motion of a mass m moving under the influence of gravity so that it 
has constant downward acceleration g.  

A1. Let us choose vertically upward direction to be z-axis, then 

??? 
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If the object begins to fall at t=0 with velocity v0, we can write 

 

 

 

Let us say that initial position of the mass is at origin and we choose the motion to 
be in x-z plane, then 

 

 

On combining the two equations we can see that 

 

This equation represents a parabola as shown in the figure. Hence the trajectory of 
the body is a parabola. 
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2.3.2 Motion of a rocket in Gravitational Field 

P2. Explain the effect of gravitational field on the motion of a rocket. 

A2. The equation of motion of a rocket is given by 

 

where P is the momentum of the rocket at time t, v is the instantaneous velocity of 
the rocket and u is the exhaust velocity. Thus in terms of the external force acting 
on the rocket the above equation can be written as 

 

 

In free space there is no external force acting on the rocket hence F=0 

 
Brain Feed 

The following link demonstrates the effect of gravity on freely falling 
objects 

http://faraday.physics.utoronto.ca/PVB/Harrison/Flash/ClassMechanics/TwoBalls
Gravity/TwoBallsGravity.html 

These animations were written by David M. Harrison, Dept. of Physics, Univ. of 
Toronto, david.harrison AT utoronto.ca. They are Copyright © 2002 - 2011 
David M. Harrison. 

 
 

http://faraday.physics.utoronto.ca/PVB/Harrison/Flash/ClassMechanics/TwoBallsGravity/TwoBallsGravity.html�
http://faraday.physics.utoronto.ca/PVB/Harrison/Flash/ClassMechanics/TwoBallsGravity/TwoBallsGravity.html�
mailto:david.harrison@utoronto.ca�
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Thus the final velocity of a rocket in free space is given by integrating the above 
equation 

 

 

i.e. the final velocity does not depend upon rate at which the fuel is burnt. 

Here the initial velocity v0=0 and M0 and Mf are the initial and final masses. However 
if the rocket takes off in a gravitational field then according to Newton’s second 
Law, 

 

Where u and g are taken to be vertically downward and constant. Rearranging the 
terms one obtains 

 

On integrating the equation we get 

 

 

If v0=0 and t0=0 and velocity to be positive upwards, 

 

Hence now the final velocity depends upon the rate of fuel burning since now the 
final velocity will be greater if the time taken by the fuel to burn out is less. In other 
words faster is the rate at which the fuel is burnt greater will be the final velocity of 
the rocket. 

 

2.4 INERTIAL MASS AND GRAVITATIONAL MASS 

• According to Newton’s Second law, F=ma, m appearing in the equation is a 
measure of amount of resistance offered by the body to external force and is 
called its inertial mass. 
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• For same F, the accelerations of two bodies ‘a’ and ‘b’ are inverse ratios of their 
masses, i.e. 

 
 

• In the previous lesson, we saw that in Equation 1, . Then acceleration 

due to gravity, g , is independent of mass of the body. The mass m, 

appearing in this equation is defined as gravitational mass.  
• There is no reason why the two masses, inertial mass or gravitational mass be 

same. 
• But experiments show that the two masses are same up to 1 part in 1011. 
• This is also known as the Equivalence Principle. 
• F=mg also defines weight of the body 
• The weight of the body can be different at different places due to difference in 

value of g, but mass remains same. 

  

2.5 GRAVITATIONAL POTENTIAL ENERGY 

 

 

       

Q Compare the work done in moving mass m1 to m2 along the following paths. 

 

 

 

Ans The work done is same in all cases.  

 

2.5.1 Gravitational Force is a conservative force 

Let us consider two masses m1 and m2 at infinite distance from each other. At infinity 
the gravitational force between them is zero. Let us evaluate the amount of work done, 
W to bring the two masses from infinity to a finite distance, r between them, Figure 2.3. 

??? 
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Figure 2.3 

 

           (2.8) 

Where, . Here the negative sign in the relation for gravitational 
force comes because of the fact that being an attractive force the force is directed 
towards the mass while the distance vector joining the two masses is directed away 
from the mass or outwards. Now only the  component of the line element contributes 
to the integral and we obtain 

                                (2.9) 

Here the negative sign appears in the relation for work done because  and  are 
oppositely directed. If we repeat the same analysis for distance between the two masses 
to be r1 in the beginning and r2 at the end, Equation (17) gives 

                   (2.10) 

• Equation (19) tells us that the work done is independent of path taken. 
• It only depends on initial and final position of the two masses. 
• Hence gravitational force is a conservative (or central) force. 
• Therefore, we can associate with such a force a scalar potential, U such that 

gradient of that potential is equal to the force. i.e. , 
 

                             (2.11) 
 

• The negative sign is to ensure that gradient results in attractive force. 
• Using the definition of gradient then we can relate change in potential or 

potential energy to amount of work done. 
 

                   (2.12) 

 
• Gravitational field, E, is defined as gravitational force per unit mass. Hence we 

can write gravitational field due to earth at a distance r from it to be 
 

                      (2.13) 

 
• Now potential is a scalar whereas force or field is a vector quantity. So it is easier 

to calculate potential using Equation and then we can calculate force by finding 
the gradient of that potential. 

• We can demonstrate this by repeating the calculation of force or field for a 
spherical shell by first calculating the potential and then finding field from there. 
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2.5.2 POTENTIAL DUE TO A SHERICAL SHELL 

Consider the following figure 

 

 
Figure 2.4 

We consider spherical shell of mass, M and radius, R and a mass, m at a distance r from 
the center of this shell. Let us calculate the potential energy required to bring the mass, 
m from infinity to a distance, r from the center of the shell. Mass per unit area of the 
shell is 

 

Area of a ring element is 

                                   

The mass of this ring, from Equations 3 and 4 is equal to, 

 

Then potential energy due to this element is, 

                                        (2.14)                    

The total potential energy can then be calculated using  

 

 

 

 

And integrating Equation (2.14), 

                (2.15) 
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                       for r>R                           (2.16) 

                       for r<R                           (2.17) 

Since in this case the limits will be (R-r) to (R+r). Gravitational potential is defined in 
terms of the gravitational potential energy as  

 

Thus the relation for gravitational potential due to a spherical shell for the above two 
cases is given by 

          for r>R                           (2.16a) 

                           for r<R                           (2.17a) 

 

Now we can calculate the force very easily. Since the potential energy depends only on 
r, we can find F using 

. 

We get, 

                                       for r>R          (2.18) 

                  = 0                              for r<R          (2.19) 

The results tally with what we had obtained previously. We can plot Equations (2.16)-
(2.19) 
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Figure 2.5 

• We can do similar calculation for a solid sphere and verify the results. 

2.5.3 POTENTIAL DUE TO SOLID SPHERE 

Consider a solid sphere of mass M, radius R and density ρ. 
 
 
 

 
 
Figure 2.6 
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Now consider a shell of radius x and thickness dx. Then mass of this shell is 
4πx2dxρ. 
Then gravitational potential at point P due to this shell is 
 
                                        (a>R)        (2.20) 

Then the total potential due to the entire sphere will be 
 

 
         

       (2.21) 

 
Using that  in the above equation we obtain 
 
                     (2.22) 

 
We see from Equation (2.22) that gravitational potential due to a solid sphere 
outside it is same as that due to a point mass 
Potential at point P on the surface of the sphere can then be calculated from 
Equation (2.21) for a=R and we obtain 
 
                (2.23) 

 
The gravitational potential energy of a mass m at point P due to the solid sphere 
is given by 

               (2.22a) 

If the mass m is on the surface of the solid sphere then the potential energy is 
given by 

           (2.23b) 

 
For point P inside the sphere i.e. a<R, consider the following figure 
 

 
 
Figure 2.7 
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To calculate the field let us imagine a sphere of radius a. Then the potential at 
point P is sum of potentials due to all shells outside the sphere of radius a, V1 
and all shells inside the sphere of radius a, V2.  
 
                    

                                     (2.24) 

 
For all spheres with radius less than a, 
 
                                                                     (2.25) 

 
Then the total potential for a<R is given by 
 
                                                         V =V1+V2 

                                                             

                                                                 (2.26) 

 
Hence the total gravitational potential energy of a mass m at a point inside the 
solid sphere at radius ‘a’ from the center due to the solid sphere of radius R is 
given by 

     (2.26a) 

We can calculate the Gravitational force also using the fact that  
 

 
                                                               a>R 

                                                                  a=R 

                                                                  a<R        (2.27) 
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Figure 2.8 
 
 
2.6 Escape Velocity 
 
 
P3. A mass m is shot vertically upward from the surface of earth with initial 
speed v0. Assuming that only force is gravity, find its maximum altitude and 
minimum value of v0 for the mass to escape the earth completely. 
 
A3. The gravitational force acting on the mass, m is 
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If the particle starts at r=Re with v0, then the change in kinetic energy of the 
particle is given by 
 

 
Or, 

 
 
Now at the highest point v(r)=0, therefore the maximum height is given by 
 

 
 
Where we have used the definition of g. 
 
 
The escape velocity from earth is the initial value of v required to achieve 
rmax=∞. The escape velocity hence is equal to 
 

 
 
With g=9.8m/s2 and Re=6.4X104m, we obtain 
 
     Vescape=1.1X104m/s. 
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 
Brain Feed 

GRAVITY IS THE WEAKEST FORCE 

• The table lists relative strengths of various fundamental forces. 

• We can see that gravity is the weakest but a long-range force. 

INTERACTION RELATIVE 

STRENGTH 

LONG 

DISTANCE 

BEHAVIOUR 

RANGE (m) 

Strong 1038            1 10-15 

Electromagnetic 1036 

 
∞ 

Weak 1025 

 
10-18 

Gravitation 1 
 

∞ 



 
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SUMMARY: 

1. Defined acceleration due to gravity. 
2. Variation of acceleration due to gravity due to altitude 

            

3. Variation of g due to rotation of earth 

 

4. Examples of motion in gravitational field 
5. Discussion on inertial and gravitational mass 
6. Established that gravitation is a central force and associated a potential with it. 
7. Potential due to a spherical shell of radius R and mass M 

                       for r>R                            

                       for r<R        

8. Potential due to a solid sphere of radius R and mass M 
        a>R 

                 a=R 

                      a<R                     

 

 

 

Multiple-choice questions: 

1. If a planet has mass double the mass of earth and density equal to average density 
of earth, then a body that weighs W on earth will weigh on the planet 
i. W 
ii. 2W 
iii. 21/2W 
iv. 22/3W 
 

2. Inside a uniform spherical shell 
i. Gravitational potential is same everywhere 
ii. Gravitational potential is zero 
iii. Gravitational field is same everywhere 
iv. Gravitational field is zero everywhere 

 
3. For a body suspended from a spring in a satellite, the ratio of its weights W1 and 

W2,, when it moves in a orbit with radii R and 2R respectively will be  
i. <1 
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ii. >1 
iii. =1 
iv. Cannot say anything 

 
4. The work done to lift a body of mass m to a height equal to radius of earth R will be 

equal to  
i. mgR 
ii. 2mgR 
iii. 1/2mgR 
iv. 1/4mgR 
 

5. If U is the gravitational potential energy of the earth-moon system with zero 
potential energy at infinity and K is the kinetic energy of moon with respect to 
earth,  
i. U<K 
ii. U>K 
iii. U=K 
iv. Cannot say anything 

 
6. A particle is kept at rest at a distance R (earth’s radius) above the earth’s surface. 

The minimum speed with which it should be projected from the stallite to just 
escape from the earth. The escape speed from the earth’s surface is ve. its speed 
with respect to satellite  
i. Will be less than ve 
ii. Will be more than ve 
iii. Will be equal to ve 
iv. Will depend on the direction of projection 

 
7. The value of ‘g’ at a particular point is 9.8 m/sec2 suppose the earth suddenly 

shrinks uniformly to half its present size without losing any mass. The value of 
‘g at the same point (assuming that the distance of the point from the centre of 
the earth does not shrink) will become 
i. 9.8m/s2 
ii. 4.9 m/s2 
iii. 19.6 m/s2 
iv. 2.45m/s2 

8. If the change in the value of g at the height h above the surface of the earth is the 
same as at a depth x below it, then (both x and h being much smaller than the 
radius of the earth) 
i. h 
ii. 20h 
iii. h/2 
iv. h2 
 

9. There is no atmosphere on the moon because 
i. It is closer to the earth 
ii. It revolves round the earth 
iii. It gets light from the sun 
iv. The escape velocity of gas molecules is less than their root mean square velocity 
here 
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10. If the radius of the earth were to shrink by 1% its mass remaining the same, the 
acceleration due to gravity on the earth’s surface would 
i. Decrease by 2% 
ii. Remain unchanged 
iii. Increase by 2% 
iv. Will increase by 9.8% 

 

 

 

Key: 

1 iv    2  iv     3 iii     4 iii    5 ii     6  iv    7  i     8 ii     9 iv      10 iii 
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Objective 

 Two body problem 
 Reduction of a two-body problem to one body problem 
 Properties of a central force 
 Energy diagrams 
 Kelplers’ Laws: Statements and proofs
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3.1 TWO BODY PROBLEM 

• It can be shown that behavior of a system of two masses, m1 and m2 
interacting through gravitational force (or any inverse square law force) can 
be reduced to a one body with reduced mass μ = (m1m2)/(m1+m2). 
 
Consider an isolated system of particles interacting via inverse square law 
force, F(r) such that F(r) < 0. 
 

 
 
  Denotes the location of center of mass 
 

Figure 3.1 

Let us write the equations of motion for the two masses 

                   (3.1) 

 
                   (3.2) 

 
Now the position of center of mass of the system is given by, 
 

                 (3.3) 

 
Since it is an isolated system 
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                           (3.4) 
 
Solution to Equation (3.4) is 
 

              (3.5) 
 
We can always choose our coordinate system in such a way that 
 
R0cm =0 and Vcm=0            (3.6) 
 
Rearranging equation (3.1) and (3.2) and then subtracting equation (3.2) 
from (3.1), we get 

 
 

                       (3.7) 

or 
                               (3.8) 

where                         (3.8 a) 
 

• Equation (3.8) is like equation of motion of a mass μ. 
• We cannot do such a thing for three or more body problems 
• Now if we know the solution to Equation (3.8), we can solve for r1 and r2. 

Substituting Equation (3.8a) in Equation (3.3) we can obtain the values for r1 
and r2.  

 
 
                                (3.9) 

 
 

3.2 GENERAL PROPERTIES OF CENTRAL FORCE MOTION 
 

We shall now discuss some properties of a central force using conservation laws. 

 
3.2.1 Motion is confined to a plane 

As F(r) is a radial force, it can exert no torque r x F(r) = 0. i.e. 

 

Angular momentum is constant.  

                                         (3.10) 

Now as r is always perpendicular to L and L is always in a plane, r is also fixed in 
a plane. 
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Since motion is confined to a plane, we can always choose the plane to be x-y 
plane. Using plane polar coordinate to define x-y plane we have 

 

 

where  

 

Defining the unit vectors in (r,θ) coordinate system using the above 
transformations we have  

 

 

Differentiating r wrt time we get 

 

 

 

Substituting this in Equation (3.8) one obtains, in plane polar coordinates, the 
equations of motion to be 

 

      Figure 3.2 

                         (3.11) 

                        (3.12) 

3.2.2 The Energy and Angular Momentum are Constants of Motion 
We have already shown that direction of angular momentum is constant. Now 
we will demonstrate that there are two more constants of motion: magnitude of 
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angular momentum |L|= l and total energy, E. The angular momentum 
magnitude of μ is given by, 

 

  
Figure 3.3 
 
 
 
 
                          (3.13) 

 
The total energy of μ is 

              (3.14) 

Where we know that 

                          (3.15) 

Where, U(ra) can be chosen arbitrarily. Substituting for  in Equation (3.14) 

using Equation (3.13), the value of total energy comes out to be 

                                 (3.16) 

This will look like energy equation for one body, having mass µ if we define 

                                     (3.17) 

Then, 

                                        (3.18) 

Ueff(r) is called the effective potential energy. The term l2/2μr2 is called the 
centrifugal potential energy. We can solve Equation (3.18) for r. 

                                           (3.19) 
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Or, 

                                   (3.20) 

Here (r0,θ0,t0) are the initial position (both radial and angular) and time 
coordinates and (r,θ,t) are the position and time coordinates after some 
arbitrary time. It is difficult to solve this equation. It can be solved only 
numerically. We can also find θ as a function of t using equation (3.13).                 

                                                       (3.21) 

Once we know r as a function of t, we can integrate this equation and determine 
θ. 

                                            (3.22) 

We can also find the orbit of the particle, i.e. r as a function of θ, by dividing 
Equation (3.21) by (3.19). 

We obtain 

                                                  (3.23) 
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Hence we have obtained a complete solution to the equation of motion. 

 

 

 

Q Show that Kepler’s Second Law is a direct consequence of conservation of Angular 
Momentum. 

 

 

Ans 

3.2.3 The Law of Equal Areas. 
o Kepler’s second Law announced in year 1609. 
o The area swept out by the radius vector from the sun to the planet in a 

given time is the same for any location of the planet in its orbit. 
o It is a direct consequence of the fact that Angular Momentum is 

conserved in a Central force. 
o We have already seen that gravitational force cannot exert a torque 

and hence both magnitude and direction of Angular Momentum are 

??? 

 
Brain Feed 

The following link helps you study the orbit of a planet. We can adjust the value of g 
and study the effect of gravity on the orbit of the planet. 

 http://phet.colorado.edu/en/simulation/gravity-and-orbits 

Embed an image that will launch the simulation when clicked 

<div style="position: relative; width: 300px; height: 226px;"><a 
href="http://phet.colorado.edu/sims/gravity-and-orbits/gravity-and-orbits_en.jnlp" 
style="text-decoration: none;"><img src="http://phet.colorado.edu/sims/gravity-and-
orbits/gravity-and-orbits-screenshot.png" alt="Gravity and Orbits" style="border: none;" 
width="300" height="226"/><div style="position: absolute; width: 200px; height: 80px; left: 
50px; top: 73px; background-color: #FFF; opacity: 0.6; filter: alpha(opacity = 
60);"></div><table style="position: absolute; width: 200px; height: 80px; left: 50px; top: 
73px;"><tr><td style="text-align: center; color: #000; font-size: 24px; font-family: 
Arial,sans-serif;">Click to Run</td></tr></table></a></div> 
Use this HTML code to display a screenshot with the words "Click to Run". 

CREDITS  

Design Team Third-party 
Libraries  

 Noah Podolefsky (lead designer) 
 Emily Moore (lead) 
 Kathy Perkins, Trish Loeblein 
 Sam Reid (lead developer), Jon Olson (developer) 
 Chris Malley (developer), John Blanco (developer) 

 piccolo2d  

 

http://phet.colorado.edu/en/simulation/gravity-and-orbits�
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conserved. 
o Figure (3.4) shows area swept by earth during a month in two 

different seasons (not to scale). 
 
 
                                                     

 
 
 
Figure 3.4 
 

 

Let us work in plane polar coordinates. Consider position of the particle at t 
and t+Δt. See Figure (3.5)  
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Figure 3.5 

For small values of Δθ, the area ΔA is approximately equal to the area of the triangle 
with base r+Δr and altitude rΔθ, as shown, 

 

 

Figure 3.6 

 

 

 

The rate at which area is swept is given by 
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                                                              (3.24) 

Here the second term on RHS in the above equation has been neglected, as it is 
insignificant in comparison with the first term on RHS. Here  represents the areal 

velocity of the planet.  

Now  

                                                 

Its Angular Momentum is  

                         (3.25) 

Combining Equations (3.24) and (3.25) 

                                                                  (3.26) 

Since Lz is constant dA/dt is also a constant 

 

     

 

Figure 3.7 

 

3.3 THE ENERGY EQUATION AND ENERGY DIAGRAM 

The energy of a two-body system can be written in two forms. 
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• The first equation looks nice, however v is itself a function of r and θ.  
• It is difficult to analyze. 
• However the second equation is only a function of r and looks like energy 

equation of a one-body problem. 

Now let us apply energy diagrams to planetary motion problem. The gravitational 
force and potential are  

 
 

 

With reference U(∞) =0, we can write 

 
                                                               (3.27) 

 

• For small value of r, the centrifugal potential term dominates. 
• For large value of r, the gravitational potential term dominates. 
• Figure 3.8 is a plot of Equation (3.27). 
• The nature of the motion is determined by the total energy term, but the 

motion is restricted to regions where kinetic energy, K=E-Ueff≥0. 
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Figure 3.8 
 
 
Discussion of motion 
1. E>0: The centrifugal barrier keeps the two masses apart. For large values 

R is unbounded but must have a minimum value if l≠0. 
2. E=0: The motion is similar to case 1 but on the boundary between 

unbounded and bounded motion. 
3. E<0: For both large and small r, the motion is bounded. 
4. E=Emin: Then bodies remain at a fixed distance from each other  for a 

unique value of r. 
5. There is one possibility, l=0. There is no centrifugal force. The bodies 

move along a straight line on a collision course. 

 

3.4 Kepler’s Laws of Planetary Motion 

• Kepler’s Three Law’s of planetary motion were formulated to describe the 
motion of planets around sun.  

• Johannes Kepler formulated his first two laws in 1609, while analyzing 
astronomical observations of Tycho Brahe. 

• In 1619 Kepler discovered his third law. 

 

First Law: 

The orbit of every planet is an ellipse with sun at one of its foci. See Figure 3.9. 
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Figure 3.9 

  

 

 

Second Law: 

• A line that connects planet to the sun sweeps out equal areas in equal 
intervals of time. In other words the areal velocity of the planet is constant. 
We have already discussed the second law in detail 
 
 

Third Law: 
• It is known as the law of periods. 
• The square of the period of any planet is proportional to the cube of the semi 

major axis of its orbit. 
• , where M is the mass of the planet 

• The law is a consequence of Newton’s Law of Gravitation. 

 

Proof of Kepler’s Laws: 

First Law: 

Equation (3.27) gives the energy equation for planetary motion 

                         (3.27a) 
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And hence using the equation of motion of a planet in an orbit given by Equation 
(3.23) and substituting the above equation we have 

         (3.28) 

Solving the integral gives (the value of the above integral can be obtained from the 
list of standard integrals), 

 

 

Rearranging the terms to get a solution for r we get, 

            (3.29) 

By convention we choose θ0=-∏/2. We define 

                                    (3.30) 

And 

                             (3.31) 

r0   physically represents the radius of the circular orbit for given values of l, μ and C 
and dimensionless parameter, ε represents shape of the orbit and is known as 
eccentricity of the orbit. In terms of these parameters, we can write Equation (3.29) 
as, 

                                 (3.32) 

 

Using the Cartesian coordinates defined after Equation (3.10), Equation (3.32) can 
be written as 

        .    (3.33) 

For 0≤ε<1, the above equation reduces to the form 

               (3.34) 

where  and  

This is equation of an ellipse. Using Equation (3.31) we have the value of E given by 

             (3.35) 
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When ε=0 then the energy is given by 

               (3.36)  

and Equation (3.33) reduces to 

     (3.37) 

which is the equation of a circle. 

When ε=1 then Equation (3.33) becomes 

 

                                      (3.37) 

This equation represents the equation of a parabola and the energy in this case is 
E=0. 

When ε>1, Equation (3.33) has the form 

                   (3.38) 

which is the equation of a hyperbola. Here the energy E>0. 

Second Law: 

We have already proved it. 

Third Law: 

Substituting Equation (3.27a) in Equation (3.20) we obtain 

       (3.39) 

The integral is a standard integral. For bounded system i.e. E<0, the solution to the 
integral is 

          (3.40) 

When t-t0=T, i.e. the planet has traversed a complete period then r=r0. The first 
term on the right hand side goes to zero and in second term the arcsin term for a 
complete revolution gives 2π. The equation then gives us, 

 

Or 
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                                (3.41) 

Where A=C/(-E). 

Hence proved. 

 

 

 
Brain Feed 

        Data supporting Kepler’s Laws 

         Eccentricity of various planets 

                    Planet           ε 

Mercury     .206 

  Venus       .0068 

  Earth         .0167 

  Mars         .0934 

 Jupiter        .0485 

 Saturn      .0556 

Uranus      .0472 

Neptune     .0086 

Pluto       .25 

 
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*Halliday, Resnik and Walker. 

 
Brain Feed 

Data supporting third law* 

Planet 
Semimajor  

axis  
(1010m) 

Period 
T (y) 

T2/a3 
(10-34y2/m3) 

Mercury 5.79 0.241 2.99 

Venus 10.8 0.615 3.00 

Earth 15.0 1 2.96 

Mars 22.8 1.88 2.98 

Jupiter 77.8 11.9 3.01 

Saturn 143 29.5 2.98 

Uranus 287 84 2.98 

Neptune 450 165 2.99 

Pluto 590 248 2.99 

 

 
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SUMMARY: 

1. Solved the two body problem by reducing it to one body problem. Defined 
reduced mass of a system,μ 

          

2. Showed that angular momentum and energy are constants of motion. 
3. Discussed motion using energy diagrams 
4. Stated and proved Kepler’s Laws of planetary motion 

 

 

Multiple choice questions 

1. For an elliptical orbit as seen from the sun which of the following remain 
constant 

i. Speed  
ii. Kinetic energy  
iii. Angular speed  
iv. Angular momentum 

 
2. The time period of satellite around earth is independent of  

i. The mass of the satellite  
ii. Radius of the orbit  
iii. None of them  
iv. Both of them 

 
 

3. If for a planet in an elliptical path around the sun the times required to sweep 
areas A and B are tA and tB, then if A=B,  
i. tA < tB  
ii. tA > tB  
iii. tA = tB  
iv. None of the above 
 

4. If the ratio of masses of two satellites A and B is 2, then  
i. Speeds of A and B are equal  
ii. Potential energy of earth + A is same as potential energy of earth +B  
iii. The kinetic energy of A and B are same  
iv. The potential energy of earth + A is same as potential energy of earth + B. 

 
5.  Consider a planet moving in an elliptical orbit around the sun. The work done 

by planet in the gravitational field of sun 
i.  Is zero in some parts of the orbit 
ii. Is zero in one complete revolution 
iii. Is zero in no part of the motion 
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6. When a planet comes nearer to the sun its speed 
i. Increases  
ii. Decreases  
iii. Remains constant  
iv. None of the above 

   

7. Kepler’s second law regarding constancy of arial velocity of a planet is a 
consequence of the law of conservation of 
i. Energy  
ii. Angular momentum  
iii. Linear momentum  
iv. None of these 

 
8. The period of a geostationary satellite is 

i. 24 hours  
ii. 12 hours  
iii. 6 hours  
iv. 9 hours 

 
9. If the gravitational force between two objects were proportional to 1/R 

(and not as 1/R2) where R is separation between them, then a particle in 
circular orbit under such a force would have its orbital speed v proportional to 
i. 1/R2   
ii. Constant  
iii. 1/R  
iv. R 

 
10. The planet mercury is revolving in an elliptical orbit around the sun as 

shown in figure. The kinetic energy of mercury will be greater at 

 

i. A  
ii. B  
iii. C  
iv. D 

 

Key: 

1  iv     2 i      3 iii    4 i     5 i    6 i    7 ii    8 i    9  ii   10  
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 Learning Objectives 
 

After reading this lesson, you should be able to  

a) Understand the concept of linear and rotational motion 

b) Define inertial frame of reference 

c) Develop the concept of non-inertial frame of reference 

d) Answer the questions of interest to engineers and physicists 

e) Apply your knowledge to the practical life 

f) Learn the concept of frames of references rotating with constant angular velocity 
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Chapter: Title Non-inertial Frame of Reference 

 

1.1 Introduction The word event is well known in ordinary speech. Anything that happens 
may be called an event. It has not only position but also the time of occurrence. A system 
of coordinate axes which describes a particle in two or three-dimensional space is known as 
a frame of reference. The essential thing about a frame of reference is that it should be 
quite rigid. As we may consider any number of rigid bodies moving relative to one another, 
thus any number of frames of reference can be considered. So, first we select one of these 
along with rectangular axes of coordinates and then assign to any event a set of three 
numbers x, y, z, the coordinates in the frame of reference of the point where the event 
occurs. 

 

1.2 Non-inertial Frames The frame of reference in which Newton’s laws of motion hold 
good are known as inertial frames of reference. The basic laws of physics do not get 
modified or changed in form in such types of frames of reference. In case, when the frame 
of reference is accelerated relative to an inertial frame, the form of basic physical laws such 
as Newton’s second law of motion becomes completely different. Such frames of reference 
having an accelerated motion relative to an inertial frame are known as non-inertial frames 
of reference. For example a uniformly rotating frame has a centripetal acceleration; it is also 
a non-inertial frame. The rotating frame of reference in which a body, which is at rest in an 
inertial frame, appears to be moving in a circle (and thus having an acceleration) is not an 
inertial frame of reference. This indicates that inertial frames are also non-rotating frames.   

1.3 Frames of reference having linear acceleration 
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Fig.1.1 

Let us consider two frames, one inertial frame inT  and other non inertial ninT . Say a frame 

ninT  is moving with a linear acceleration la  with respect to the inertial frame inT (Fig.1.1). 

Then, any particle (say M) at rest with respect to frame inT  will clearly appear to be moving 

with acceleration la−  with respect to frame ninT  and therefore a particle having an 

acceleration a  with respect to the inertial frame inT  will appear to have an acceleration  

in frame ninT  which is given by  

 

So that, if m be the mass of the particle (assumed to remain constant in inT  or ninT ), we 
have  

Force observed on the particle in frame ninT  is given by  

)1.1()( llninnin amamaamamF 
−=−==   

where Fam


=  is the force on the particle in the inertial frame inT . Therefore, Equation 

(1.1) becomes  

or Substituting ll Fam


=  we get  

And if 0=F


 i.e. no force is acting on the particle in initial frame inT  then  

 

Or we can say that a force ll amF 
=  appears to be acting on the particle in frame ninT  

(moving with respect to inT ), which is, therefore a non-inertial frame. This is also known as 

apparent force in ninT . Because of the fictitious component, a man inside the lift (when 
moving upward with a uniform acceleration) feels more weight than his real weight and 
feels less weight when lift is moving downwards with uniform acceleration.  

1.4 Rotating frame of reference 

Let us suppose an inertial frame of reference inT  and another reference frame rT . Say a 
particle at M (shown in Fig. 1.2) whose position vector is r  with respect to the origin of 
either frame of reference. Coordinates of the considered particle are zyx ,,  in frame inT  and 

rrr zyx ,,  of frame rT . Both origin and coordinate axes of rT  are such that they coincide with 

those of inT . Let frame rT  starts rotating about the common axis of z, so that in time t, the 
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axes rPX  and rPY  of rT  have turned through an angle ωt (where ω is uniform angular 

velocity) each with respect to axes PX and PY of frame inT , in time t.  

 

Fig. 1.2 

Now we have to find out the relation between the coordinates, x, y, z and rrr zyx ,,  of a 
particle M in the two frames of reference respectively, its position vector with respect to the 
origin being the same r  in either frame. 

We have rx = sum of the components of x, y, z along the axis rPX i.e. 

Since tXPX r ωcoscos =  

tYPXr ωsincos =  

0cos =rZPX  

We get )2.1(sincos tytxxr ωω +=  

 Similarly for ry :  

we have )3.1(cossin tytxyr ωω +−=  

and       )4.1(zzr =  

Equations (1.2), (1.3) and (1.4) are therefore the transformation equations in the case 
of the frame of reference rT  which is rotating with a uniform angular velocity ω relative to 

the inertial frame inT . 
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The inverse transformation equations (from rT  to inT ) will now become 

tytxx rr ωω sincos −= , tytxy rr ωω cossin +=  and rzz =  

The particle M does not experience any force in frame inT  as it is an inertial frame. We, 

therefore, have 0
2

2

=
dt

xd
, 0

2

2

=
dt

yd
 and 0

2

2

=
dt

zd
 

Differentiating expressions (1.2), (1.3), (1.4) for rrr zyx ,,  respectively w.r.t. t, we have 

t
dt

dyt
dt

dxtytx
dt

dxr ωωωωωω sincoscossin +++−=  

Using Equation (1.3), it becomes   

)5.1(sincos t
dt

dyt
dt

dxy
dt

dx
r

r ωωω ++=  

Similarly,  

t
dt

dyt
dt

dxtytx
dt

dyr ωωωωωω cossinsincos +−−−=  

Or, since rxtytx =+ ωω sincos  [From Equation (1.2) above], we have  

)6.1(cossin t
dt

dyt
dt

dxx
dt

dy
r

r ωωω +−−=  

)7.1(
dt

dz

dt

dzr =  

Differentiating expressions (1.5), (1.6), (1.7) once again, with respect to t, we have 

t
dt

dyt
dt

dx

dt

dy

dt

xd rr ωωωωω cossin
2

2

+−=  

Since from relation (1.6) above, 









+=+− r

r x
dt

dyt
dt

dyt
dt

dx ωωω cossin  

We have )8.1(2 2

2

2

r
r

r
rrr x

dt

dyx
dt

dy

dt

dy

dt

xd ωωωωω +=









++=  
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Similarly, t
dt

dyt
dt

dx

dt

dx

dt

yd rr ωωωωω sincos
2

2

−−−=  

Using the Equation (1.5), we get 











−=+ r

r y
dt

dxt
dt

dyt
dt

dx ωωω sincos  , 

  We have )9.1(2 2

2

2

r
r

r
rrr y

dt

dxy
dt

dx

dt

dx

dt

yd ωωωωω +−=









−−−=  

and     )10.1(
2

2

2

2

dt

zd

dt

zd r =  

From relations (1.8) and (1.9) above, we come to the conclusion that even though no force 
is acting on a particle M in frame inT , a force seems to be acting on it in frame rT , 

producing an acceleration in it. Frame rT  is, therefore, a non-inertial frame of reference. 

 

1.5 Pseudo forces (or Fictitious forces)  

Consider a particle of mass m. According to Newton’s second law, the force acting on a 
particle in an inertial frame inT  is given by amF 

= . The force acting on it in a non-inertial 

reference frame Tnin, moving with an acceleration la  with respect to inT  will be . Now, 

put ll Fam


=−  and , we have  

 . 

This force lF


 does not actually exist but appears to come into picture as a consequence of 

the acceleration of frame Tnin with respect to inT .  Therefore, it is termed as false (pseudo) 
or fictitious force and can be obtained as the product of mass with the acceleration of the 
non-inertial frame, with its sign reversed. The negative sign ensures that the effect of 
acceleration of the non-inertial reference frame Tnin is negated if this fictitious force is added 
to any force acting on the particle in an inertial frame inT . In other words, Newton’s second 
law of motion will also hold in the non-inertial frame Tnin provided we add to the true force 
F


 a fictitious force ll amF 
−=  and the non-inertial frame Tnin will also behave as an inertial 

frame of reference. Otherwise Newton’s laws of motion are valid only in inertial frame of 
reference. 

For e.g. consider a person having mass m at rest with respect to a lift which is going 
downwards with an acceleration g. Here the lift acts as a non-inertial frame of reference. 
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Thus a fictitious force given by mgFl −=  will appear to act on it. Thus to the person 
travelling downwards in the lift (moving with the non-inertial frame), the resultant force 
acting on him will appear to be = true force acting on him (i.e. mg ) + the fictitious 

force, ll amF 
−= , or , i.e. the person will experience weightless and thus 

remain suspended in air. 

We can find out whether or not a given frame of reference is accelerated with help of 
fictitious force. For, if two frames were in uniform relative motion (zero acceleration), with 
respect to each other, they are obviously inertial frames, and it is very complex to detect 
which one is at rest and which one in motion.  

1.6 Earth (A non-inertial frame of reference) Earth goes round the sun and it 
also spins about its own axis. Say ω is the angular velocity. Centripetal acceleration (at the 
equator) is given by  

)11.1(2Rac ω=  

Angular velocity  

)12.1(
606024

22

××
==

ππω
T

 

 Radius = cmR 8104.6 ×= .  

Substituting the values of ω and R, centripetal acceleration comes out to be 2/4.3 scmac = . 
This value is quite small for most of our daily life activities, and so can be neglected. The 
earth is taken to be a satisfactory inertial frame of reference. We must now regard as 
equally satisfactory the interior of any vehicle, which moves over the earth with constant 
velocity. This is in accordance with common experience: we are not conscious of the smooth 
uniform motion of a train when we are travelling in it; we become alert or conscious about 
the motion only when the train brakes or executes a bend round a corner.  

So, now the point is about the location of the frame of reference.  We can take any rigid 
object, which is located in distant space as an inertial frame of reference. Now, since we 
know that motion is always described in a relative frame of reference, i.e. in a frame in 
which the position of a particle or a body is specified in relation to other material objects 
which may themselves be in motion relative to other material objects, Newton insisted the 
presence of a fundamental frame of reference, which he called absolute space. With respect 
to this frame, all motion must be measured. 

For most of our purposes, the reference frame, stationary with respect to the fixed 
stars, is good enough as our fixed or absolute inertial frame of reference. All other frames of 
references having uniform motion relative to it, naturally, also act as equivalent inertial 
frames, as also any reference frame whose origin coincides with that of an inertial frame 
even though its coordinate axes may be inclined to those of latter.          

1.7 Frames of reference rotating with constant angular velocity  
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Let T is a Newtonian frame of reference and rT  a frame of reference rotating about a point 

O of T with constant angular velocity ω. Say î , ĵ  be perpendicular unit vectors fixed in rT . 
Suppose M be a moving particle, 

 

Fig. 1.3 

taking axes OX and OY in rT , in the directions of î  , ĵ  , the position vector of M  is 

)13.1(ˆˆ jyixr +=


 

Now )14.1(ˆˆ
j

dt

id ω=
 

)15.1(ˆˆ
i

dt

jd ω−=
 

(In order to derive the above relation write the unit vectors î , ĵ  of the frame rT  in terms 
of unit vectors of the frame T) 

Differentiating Equation (1.13) gives, for the velocity of particle M (relative to T),  

)16.1(ˆˆ jx
dt

dyiy
dt

dx

dt

rdv 









++










−== ωω




 

Differentiating once again the Equation (1.13), for the acceleration of M (relative to T), 

)17.1(ˆ2ˆ2 2

2

2
2

2

2

2

2

jy
dt

dx

dt

ydix
dt

dy

dt

xd

dt

vd

dt

rda 









−++










−−=== ωωωω




 

Institute of Lifelong Learning, University of Delhi 



 Non-inertial Frame of Reference  

 

Thus, if X and Y are the components of true force in the directions of î , ĵ  respectively, we 
have the equations of motion 

)18.1(2 2

2

2

Xx
dt

dy

dt

xdm =









−− ωω  

)19.1(2 2

2

2

Yy
dt

dx

dt

ydm =









−+ ωω  

These Equations can be rewritten as 

)20.1('''
2

2

XXX
dt

xdm ++=
 

)21.1('''
2

2

YYY
dt

ydm ++=  

where         

      dt

dxmY ω2' −=            (1.22)  

                 xmX 2'' ω=         ymY 2'' ω=                (1.23) 

Therefore, the particle moves relative to the rotating frame of reference in accordance with 
the Newton’s law of motion, provided that we add to the true force the two fictitious forces 
(X’,Y’) and (X’’,Y’’).  

Institute of Lifelong Learning, University of Delhi 



 Non-inertial Frame of Reference  

 

 

Fig. 1.4    

The fictitious force (X’,Y’) is known as the Coriolis force. Its magnitude is proportional to the 
angular velocity of rT  and to the speed v’ of the particle relative to rT ; its direction is 

perpendicular to the velocity 'v relative to rT  and is obtained from the direction of 'v  by 
rotation through a right angle in a sense opposite to the sense of the angular velocity 
(Fig.1.4). The fictitious force (X”, Y”) is named as the centrifugal force. Its magnitude is 
proportional to the square of the angular velocity of rT  and to the distance of the particle 
from the center of rotation, which is directed radially outward from the center of rotation.  

These fictitious forces represented through Equations (1.22) and (1.23) can be written in 
the more familiar 3-dimensional form by combining the Equation (1.22) to give the Coriolis 
force and Equation (1.23) to give the Centrifugal force. Thus the Centrifugal force is given 
by 

)24.1()( nce rmF 
××−= ωω      

where  is the normal or perpendicular distance of the particle from the axis of rotation. 

While the Coriolis force is given by 
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)25.1(2 vmFcor ′×−=


ω       

Thus the Fictitious force acting on the particle in a rotating frame of reference is given by 
combining equations (1.24) and (1.25) 

)26.1(2)( vmrmFFF ncorcefict ′×−××−=+=


ωωω    

Thus rewriting the equation of motion for force acting on a particle in a non-inertial system 
for a rotating system (since a rotating frame of reference is also a non-inertial frame of 
reference) we have 

)27.1(lninrot FFFF


−==        

As discusses earlier  is the force acting on the particle by virtue of the rotation of the frame of 
reference and is equivalent to the fictitious force acting on the particle. The way we have 
defined , the relation between it and the Fictitious force  would be 

)28.1(fictl FF


−=           

Hence Equation (1.27) can be rewritten as 

)29.1(2)( vmrmamFFF nfictrot ′×−××−=+=


ωωω     

The above equation gives the force acting on a particle in a rotating frame of reference. For an 
inertial frame of reference the equation of motion i.e. the equation defining the force acting on a 
particle, would have consisted of only the first term on the right hand side (RHS). However since 
a rotating frame of reference is a non-inertial frame of reference hence two more forces 
contribute. These forces are termed fictitious forces as they do not arise because of any 
physical interaction of the particles but come into effect purely on account of the fact that the 
frame of reference is accelerating (rotating in the present case). The 2nd term on RHS is the 
Centrifugal force acting outward along the direction of from the axis of rotation. This term 
balances the Centripetal force acting in the opposite direction towards the axis of rotation. 
Centrifugal force ensures that we are not sucked into the earth and also that we are able to 
move from one place to another. While the Centripetal force ensures that we do not fly off the 
surface of earth due to Centrifugal force. The 3rd term is the Coriolis force, which comes into 
effect if the particle is moving with some velocity say . Coriolis force arises due to the fact that 
while the angular velocity in a rotational motion remains constant as we move inward or outward 
along the radial direction. However the linear velocity associated with the angular velocity of 
rotation increases or decreases with the radius vector as we move outward or inward. This is 
because each point is moving with the same angular velocity and hence executes the rotation in 
the same time period. Thus the points farther from the axis of rotation will have a higher linear 
velocity since they need to cover a larger circumference in the same time period. Thus if a 
particle moves from an outer point to an inner point with some velocity then it also has a 
tangential linear velocity due to rotational motion which is more than the tangential linear 
velocity of the inner point so it will reach inner radial position before the point which would have 
been its final destination had it moved with velocity in an inertial frame of reference. As a 
result the particle appears to trace out a curved path. For anticlockwise motion and particle 
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moving inwards this curved path would be towards the right while for particle moving outward 
this curved path will be directed towards the left. The particle thus appears to execute circular 
motion instead of linear motion under the influence of rotational motion. Thus it appears to an 
observer that a force is acting on the particle causing it to deviate from linear path and execute 
a circular path. This force is termed as Coriolis force.       

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary 

 

1. A frame of reference is a system of coordinate axes describing a particle in two or three-
dimensional space. It should be quite rigid.  

2. Newton’s laws of motion hold good for inertial frames of reference. The basic laws of 
physics remain invariant in form in these types of frames of reference.  

3. If the frame of reference is accelerated relative to an inertial frame, the form of basic 
physical laws such as Newton’s second law of motion gets changed. Such frames of 
reference having an accelerated motion relative to an inertial frame are non-inertial frames 
of reference.  

4. The rotating frame of reference in which a body, which is at rest (say) in an inertial 
frame, appears to be moving in a circle (and thus having an acceleration) is not an inertial 
frame of reference. This indicates that inertial frames are also non-rotating frames.   

5. We know that Newton’s laws of motion are obeyed only in inertial frames of reference, it 
follows as a natural consequence that, subject to some constraints like mass remaining 
constant, the relation amF 

=  holds good only in inertial frames, not in non-inertial ones. 
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Some illustrative examples 

Ex1 An airplane is flying at 500 mph along a straight horizontal path in the polar region. 
Find the angle at which the plane is banked against the Coriolis force. 

Sol. The frame of reference is the earth, which rotates π2  rad in 24 hr.  

0000727.
606024

2
=

××
=

πω  rad/sec 

Velocity = sec/733
60

88500 ft=
×

 

Coriolis force= W
g

Wum 0033.0000727.73322 =
××

=ω  

where W is the weight of the plane. This is the horizontal component of the lift. The vertical 
component is the weight. Angle of bank is 0033.tan 1−  . 

Ex2 A body of mass 10 kg in a frame of reference, is moving vertically downwards, with an 
acceleration of 5m/s2. Determine the fictitious force and the observed (or total) force (Take 
g=9.8 m/s2). 

Sol. Considering the earth to be an inertial frame of reference. Since the body is moving 
vertically downwards, 

True force exerted on the body, NnewtonmgF 0.980.98)8.9(10 =−=−==


downwards 

And, the pseudo (or fictitious) force acting on the body, NamF 0.50)]5([10)( 00 =−−=−=


 
upwards 

So, the observed or total force on the body NFFFt 0.48500.980 −=+−=+=


= 48.0N 
downwards 

Thus, here fictitious force on the body is 50N upwards and the observed (or total) force on it 
is 48N downwards. 

Ex3  A freely falling body of mass 8kg with reference to a frame is moving with a downward 
acceleration of 3m/s2. Calculate the amount of total force exerted on it? 

Sol. In a non-inertial frame, force ninF


 acting on a body is given by linnin FFF


−=  where 

inF


is the force on the same body in an inertial frame and lF


is the fictitious force due to the 
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accelerated motion of the non-inertial frame. Since the body is falling freely, downward 
force on it in the inertial frame of the earth is 0=inF


. 

So, lnin FF


−=  or lnin amF 
−= where la  is the acceleration of the non-inertial frame and m 

the mass of the body. As the reference frame is moving downward with an acceleration of 
3m/s2 i.e. 2/3 smal −=


. 

NamF lnin 24)83( =×−−=−=


 

The positive sign implies the upward direction of the fictitious force.  

Ex4 Find the effective weight of an astronaut ordinarily weighing 80kg when his rocket 
moves vertically upwards with 2g acceleration. 

Sol. As the rocket moves vertically upwards with an acceleration 2g, it is a non-inertial 
frame and therefore the total force on the astronaut is given by lin FFF


−=  

where inF


is the force on the astronaut in an inertial frame and lF


is the fictitious force on 
the astronaut due to the acceleration of the rocket. 

Now  NgwtkgFin .8080 ==


 

and gNgNamF ll 160.280 −=×−=−=


 

So, the effective weight of the astronaut 

kggNggFFF lin 240240)160(80 ==−−=−=


 

Ex5 Find the rate of rotation of the plane of oscillation of a pendulum at latitude 60 and 
also calculate the time taken to turn through full right angle. 

 Sol. At a latitude 
2

360sin60 == λ  

The period of rotation hrT 7.27

2

3
2

sin

2
=

×
==
ω

π

λω

π

 

Hence rate of rotation= hrrad /
7.27

2π
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and time taken to turn through full right angle or 
2

π
  rad= hr9.6

7.27
2

2 =
π

π

 

 

 

Questions for practice 

1. What are non-inertial frame of reference. Explain with an example. 

2. Describe the fictitious forces and why they are called so? Under what conditions will an 
accelerated frame of reference act as an inertial frame? 

3. Calculate the values of Coriolis forces on a mass of 45g placed at a distance of 5cm from 
the axis of a rotating frame of reference, if the angular speed of rotation of the frame be 
25rad/sec. 

 

Exercises 

Complete the sentence. 

Q1 Frames of reference having an accelerated motion relative to an inertial frame are 

known as  ________  frames of reference. 

Q2 According to Ferel’s law, the rotation of ________ is responsible for the movement of 

wind and ocean current. 

Q3 Usually, the reference frame which is at rest with respect to the fixed stars, is good 

enough as our fixed or absolute ________  frame of reference. 

Q4 The force which appears to be acting on a body due to the acceleration in non-inertial 

frame is called ________.       

Q5 A particle is in motion relative to a  ________ frame of reference, then fictitious force 

acted is called coriolis force.  

Q6 The basic laws of physics get modified in ________ frames of reference. 

Q7 The wind and ocean current are deflected to the ________ in the northern hemisphere.  

Q8 Earth is a ________ frame of reference  
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Q9 The locations where the acceleration due to gravity on the surface of the earth is 

greatest and the least respectively are at the ________ and at the ________. 

Q10 If earth’s mass M and  radius R were both reduced to half their present values, the 

acceleration due to gravity on the surface of earth would be ________ times its present 

value.  

 

Answers 

1. non-inertial 2. Earth 3. Inertial 4. Pseudo force 5. Rotating  6. non-inertial 7. Right 8. 

non-inertial 9. Poles, equator 10. Two 

 

MULTIPLE CHOICE QUESTIONS 

Q1 We can find out whether or not a given frame of reference is accelerated with help of 

________ . 

a) Gravitational forces 

b) Fictitious forces 

c) Electromagnetic forces 

d) Magnetic forces 

Q2 The value of centripetal acceleration at the equator is  

a)  
222/4.3 scmac =  

b) 
22/8.9 scmac =  

c) 
22/980 scmac =  

d) 
22/8.9 scmac =  
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Q3 A system of coordinate axes describing a particle in  ________  space is called a 

reference frame. 

a) one dimensional  

b) two dimensional 

c) three dimensional  

d) both b and c 

Q4 A frame of reference is moving with an acceleration of  2/5.1 sm  downwards. Apparent 

force acting on a body of mass 4kg falling freely relative to the frame is 

a) 7N 

b) 5N 

c) 6N 

d) 10N   

Q5 If a particle is at rest relative to the rotating frame of reference then coriolis force acted 

is 

a) maximum 

b) minimum 

c) zero 

d) none   

Q6 The direction of coriolis force is  

a) perpendicular to w and v  

b) parallel to w and v 

c) perpendicular to w and parallel to v 

d) perpendicular to v and parallel to w   
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Q7 A freely falling body is acted upon by gravitational force, then coriolis acceleration is 

directed. 

a) towards the south 

b) towards the west 

c) towards the north 

d) towards the east  

Q8 The horizontal eastward deflection of a freely falling body due to the effect of coriolis 

force at the equator is  ________  at the equator. 

a) maximum 

b) minimum 

c) zero 

d) none  

 

Answers   

 1. b 2. a 3. d 4. c 5. c 6. a 7. d 8. a  

 

 

References/ Bibliography/ Further Reading References 

1. “Principles of Mechanics” John L.Synge and Byron A. Griffith 

2. “Mechanics” Boyd and Ott Third Edition 

3. “University Physics” Sears F.W., Zemansky 

4. “Numerical examples and Problems” Chatterjee 

5. “Mechanics” D.S.Mathur, revised by P.S. Hemne      

6. “Physics” Resnick, Halliday and Walker  

 

Institute of Lifelong Learning, University of Delhi 


