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PAPER-II PHY 102: ELECTRICITY AND MAGNETISM
Max. Marks: 50
Internal Assessment : 05
Time: 3 Hours

Note:
1. The syllabus is divided into 3 units. Eight questions will be set up. At least two
questions will be set from each unit and the student will have to attempt at least
one question from each unit, A student has to attempt five question in all.
2. 20% numerical problems are to be set.
"3. Use of Scientific (i non-programmable) calculator is allowed.

UNIT—I

Mathematical Background: Scalars and Vectors, dot and cross product, Triple vector
product, Scalar and Vector fields, Differentiation of a vector, Gradient of a scalar and
its physical significance, Integration of a vector (line, surface and volume integral and
their physical significance), Gauss’s divergence theorem and Stoke’s theorem.

- Electrostatic Field: Derivation of field E from potential as gradient, derivation of
Laplace and Poisson equations. Electric flux, Gauss’s Law and its application to
spherical shell, uniformly charged infinite plane and uniformity charged straight wire,
mechanical force of charged surface, Energy per unit volume.

“UNIT—II

Magmetostatistics: Magnetic induction, Magnetic flux, Solenoidal nature of vector
field of induction, Properties of B (i) V.B =0, (ii) Vx B=,J, Electronic theory of
dia and paramagnetism, Domain theory of ferromagnetism (Langevin’s theory), Cycle
of magnetization Hystresis loop (Energy dissipation, Hystresis loss and importance
of Hystresis curve). '

UNIT—III

Electromagnetic Theory: Maxwell’s equations and their derivations. Displacement
current, vector and Scalar potentials, Boundary conditions at the interface between
two different media, Propagation of electromagnetic wave (Basic idea, no derivation),
Poynting vector and Poynting Theorem.
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' Electricity and Magnetism

SYLLABUS

Mathematical Background : -

Scalars and Vectors, dot and cross product Triple vector product, Scalar and Vector
fields, Differentiation of a vector, Gradient of a scalar and its physical significance,
Integration of a vector (line, surface and volume integral and their physical signifi-
cance), Gauss’s divergence theorem and Stoke’s theorem.

Electrustatlc Field

Derivatien of field E from potentlal as gradient, denvatlon of Laplace s and Pois-
son’s equations. Electric flux, Gauss’s Law and its application to spherlcal shell,
uniformly charged infinite plane and uniformily charged straight wire, mechanical
force of charged surface, Energy per unit volume.



viathematical Background .
(Vectors) |

p—

41. INTRODUCTION

For better understanding of the physical concepts, in the study of the subject of
electrostatics, magnetostatic and electricity, it is best studied by the use of techniques
of vector algebra and vector calculus. Vector notation provides us mathematical
convenience of expressing equations/formulae in a compact form. We, therefore,
ot the very outset, propose to develop some mathematical tools required to deal
with vectors. ' |

1}, SCALARS AND VECTORS

There are two main categories of physical quantities, known as scalar quantities
and vector quantities. : | =5 ety

Scalar quantities are those, which are completely defined by magnitude alone.
Examples of such quantities are mass, time, length, temperature, charge, electrostatic
potential etc. These quantities obey the ordinary laws of algebra.

Vector quantities on the other hand, are those which are completely defined only
when both the magnitude and the direction in which they act are known. Examples
of such quantities are displacement, velocity, acceleration, force, electric field,
magnetic field etc. These quantities cannot be added using simple algebraic rules,
except when they are acting along the same straight line.

43. SYMBOLIC REPRESENTATION OF A VECTOR

Itis represented by a bold face letter or a light face letter with an arrow head. For
example, velocity a vector quantity, may be represented by V or 1 . The magnitude
of the velocity vector is represented by Vorby|V]or |;1 called absolute value

or modulus of the vector. The magnitude of a vector is a scalar. We shall use light
face letter with an arrow head as symbol of vector in this book.

4. GRAPHICAL REPRESENTATION OF AVECTOR

— —_
Aevector V is represented graphically by a line with an arrow /B
3d at one end, The magnitude of the vector quantity is given 4

Y the length of the line chosen on a suitable scale, while the  Fig. 4.1 Graphical

Irection | we T A 5
lon in space is indicated by arrow head mark on the line.  representation ofa
" Vector.

L



- . — AasshowninFig. 43 - .

‘(1.5. EQUALITY OF VECTORS

Wo vectors are said to be equal, if they have the same =~ R

length and are drawn parallel to each other having the - A,//////:F %,
same sense. In Fig, 4.2, the straight lines AB, EF and /D
CD are parallel and are of equal length. They represent S
the same vector in terms of definition. Thus, We €an" - gjg 4.2 Equilibrium two vectgyg
write equality as 4B =CD = EF . It should be kept e ST
in mind that equality of vectors is independent of the position of their 1n1._tlal point,
Thus if a vector is displaced parallel toitself, it will remain unchanged.

4.6. NEGATIVE VECTOR (OPPOSITE VECTOR)

- : .
The negative of a vector 4 is another vector havingthe ot oPF
same length but opposite in direction and is denoted by O,/:’;«g P
Tsi e ol e : = = . _Aof
) 3

it UG I S SHTa - -~ Fig.4.3 Negative of a Vector
4.7. ANGLE BETWEEN TWO VECTORS P T
“When two vectors 4 and B are drawn from a F = s ]
- common initial point O as shown in Fig. 4.4, 5 ; DS
there are two angles 8, and 0,. If 6, # 0,, then - - = |- Ay P
one of the angles i.e., £0; isless than 180°and 5 6,
~the other angle 0, is greater than 180°,then the % G e = ~ &

angle 6, which is less than 180° is taken as the :
angle between the two vectors 4 and § If0; = Fig. 4.4 Angle between two Vectors
6, =180°, then any of the two is the angle between the two vectors.

4.8 ADDITION OF VECTORS

Addition of vectors means is to find their resultant.
The resultant of two or more vectors is a s ngle vec-
tor which produces the same effect as the individual
vectors taken together can do. As vectors possess -
both magnitude and direction, so they cannot be =~ = A
added filgebf‘aically but are added geometrically,  Fig.4.5 Law of triangle of vectors
¢.8., using triangle law, parallelogram law and polygon law.

(i) Triangle law: Let us consider two vectors

=
—
B

= - : :
and B, such that terminus -

—
: . _ - - .
of A is the initial point of B ag shown in Fig. 4.5. then the vector R which s

f e TRy . =3
obtained by joining the initial point of A4 to the terminal point of B is called the

_’
resultant or sum of the two vectors 4 and B - The sum is written as ;I 2 E, 1.6

- -

R=4A+p
(i) Parallelogram law: If the tw

) O vectors are such that the origin of 4 5,
the origin of B [as shown in Fig, 4.6] 1 :

hen their sum is obtained by setting off the
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Lector B at the end of vector 4 and drawi ing the

“IUr R b\ _]Olnmﬂ ‘0 thc bCO]nnlnn of 4 to®

atthe end of B, so that gt B

- — =k A

R=4+8B 1) Vg A Addiion of vectars by
A similar result is obtained by setting ol vector parallelograim law
j at the end of vector B . So that

] =]

R=B8+, 2 v
Comparing (4. l) and (4.2), we h.\w

4 + B - h + A ...(4.3)

Thus the sum of two veators is completely represented by the diagonal of a
parallelogram drawn through the point of origin of the two veetors, taken as the’
two adjacent sides of the parallelogram, lts direction is according the direction of
two vector i.e. it is directed away from origin, il two vector are also so.

Equation (4.3) shows that the vector addition is commutative i.e., sum of the
vectors remains same in whatever order they are added.

Importance of commutative law. It is not sufficient for a physical quantity to
have magnitude and direction to be a vector. It must also obey the commutative law -
of addition. If a quantity does not obey this law, it is not a vector, even if it possess
magnitude and dlrecuon

If vector A and B are inclined to each other at an Z0, the magnitude of the

resultant is given by

R= \JA>+B?+24Bcos®

—3
If B is the angle which the resultant R makes with the direction of A then

tan B Bsin B
anP =
A+ BcosO

(iiii) Polygon law. Let us consider a number of vectors  d D <
- e — - v ”‘1 -
4 ’ B C D ox /" C

If these four vectors are represented by the sides of & ";ue’; < \b
an open polygon taken in the same order, then their sum P - &

o ‘_q.-:_-.——vi;————-—‘-ra

(feSuhant) R is obtained j _|01n1ng initial point o of vector

Fig. 4.7 Polygon law of

4 and terminal point of vector D as shown in Fig, (4.7)
vector addition

ie., vector B obtained by joining 0 and d gives sum of
) = S5 9 -
Vectors 4, B, C and D ’

—_—

s A N —i)
R=A+B+C+ 1D
o2 DIFFERENCE OF TWO VECTORS

The difference of two vectors  and H is represented h}' A= B i that veetor D

W
hich when added to B gives vector A, Equivalently, 1 - i may also be defined



4.10_LAWS OF VECTOR ALGEBRA

'_,-"-—--\-“."'} ., — —
If A4, B and C are vectors and m and n are scalars, then
- (1) Commiutative law of vector addition

- o - -
A+B=B+4
i.e., in addition, order is not important
(ii) Associative law for vector addition
- 2 5 - -—
A+(B+C)=(4+B)+C
(i11) Commutative law for multiplication
Pl = - :
mA=Adm
- (iv) Associative law for multiplication
= - :
mnA)= (mn) A
(v) Distributive law -
. — - —
@m+nAd=mAd+n4
- - - -
(b)m(A +B)=md +mB

4.11. ZERO OR NULL VECTOR

A vector whose initial and terminal points are coincident is called null vector. It

has zero magnitude and no specific direction, [t i represented by the symbol 0 (20
arrow over the number zer6). It represents a pair of coincident points.

4.12. MULTIPLICATION OF A VECTOR BY A SCALAR

-) -
The product of a vector 4 by a scalar ‘m’ is a vector 3, whose magnitude I1s ™

: -
times the magnitude of 4 and having the same direction or opposite to that of 4
as ‘m’ is positive or negative thus

=3 —

B =m4

h 8 P
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Examples of such multiplication are very common in Physics, Just as, when
multiply mass, a scalar, with velocity, a vector, we obtain a the mu]tiplicatizm ofa
 gcalar with a vector will give a new vector, which will have the same direction as
that of the original vector. Momentum will have the direction of velocity.

413(UNIT VECTOR

A . i y . b 4
A unit vector 1s a vector having unit magnitude. If 4 is a vector with magnitude 4

._)
. #0, the unit vector 1s defined as the ratio of vector by its magnitude, i.e., A and

. . . = . . A
. has the same direction as that of 4. It is written as 4 and is read as ‘4 cap’ or 4
hat. Thus we can write

y

—_
A_
A LA 74 oa
— 5 5 J %

or A=AA i k /0

L] - ﬁ -
Since 4, the magnitude of vector A4 is the x :
numerical value with units, so unit vector is  Fig. 4.9 Graphical representation
dimensionless. ' of unit vector 7, j and k

The most common unit vectors are those which

have the directions of the positive x, y and z axis of a three dimensional rectangular
co-ordinate system and are denoted respectively by i, j and % as shown in Fig.
4.9. These vectors are called unit orthogonal vectors. 4 vector taken along ary one

of the three axes may be written as scalar multiple of magnitude of vector 4 and
—)

the unit vector along that axis. For example, a vector 4 taken along x-axis, can be
Written as 4 \



4.1\5@TIPLICATION OF VECTORS

When two vectors are multiplied, we define two type of multiplications; one is
called scalar or dot product and the other is called vector or cross product These
products are discussed separately as under:

(a) Scalar or dot product of two vector

Scalar product of two vectors A and B represented A B and read as “ 4 dotB
is defined as a scalar quantity equa! in magmtude fo the product of the magmtudes



N T s ey FRTyS

of he two vectors and the cosines of the smaller angle

penween them. Thus, the scalar product of two vectors A
2. 4. .

ol B inclined at an £8 as shown in Fig, 4.13, is given

by the equation o
- - = [-4— L PC
1B B cos 6 —!
63, - |4[|B] cos 6 -+-(4.10) Fig. 4.13 Scalar product of
= 0Cx OD cos 8 two vector

(as OC is magnitude of vector A and OD is magnitude of E)
= 0Cx0L

As ODcosB=|§|cose

is the magnitude of the component of B along the direction of A and is equal to OL.
Thus, scalar product of two vectors is the product of the size of one vector with
magnitude of the component of the other in the direction of first.
An important example of the dot product of two &
vectors is the work done by a force in displacing a body i
through a certain distance. Let a particle acted on by a (A

force vector F be displaced through a certain distance ~ Fig: 414 Work done s’
- - -
S (Fig. 4.14). The work done W by the force F in this Sedlarmioduptt FAnd
process is given by :
- -
W=F.S =FScos0
- -
where 6 is the angle between F and S . Work done is scalar, although the two
. Quantities, i.e., force and displacement defining it are vectors.

The unit of scalar product is determined by the product of the units of :4) and E 3
Important properties of scalar product :

i Scalar product is commutative
- -
Also B.A=|B||A|cos(B.4)

= = = =}
= |B||A|cos(-8)=|B]||A4|cosb ...(4.11)
(* cos (-8)=cos 0)

Comparing it with eqn.(4.10), we have
- = - = '
A.B =.B:4; -
Hence the scalar product of two vector is commutative i.e., independent of the
Order of vectors.
(1)) Scalar product of two parallel/collinear vectors

F{ If the vectors :4) and }; are either collinear or parallel to each other, then the

| “Mgle between them is zero, i.c., 28 = 0°. "

'E Hence, 4.3 =1:4’”1_'-‘3“COSC'c'=|_j||B| (v cos0°=1)

the.:hus ﬂ_le dot product of two vectors which are parallel, is equal to product of
Magnitudes, e

2.5 P ) :
gi\'elnfbs;r = 4, the scalar product of a vector with itself, called its self product 1s

f
£
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e W e o VT o A
‘ zf/; fl/fillzllc‘(m() =|A||A| =4
iy - =
or magnitude of vector A =4 = A A )
(iii) Scalar product of two perpendicular veclors I
If two vectors ;1’ and B arc perpendicular to cach other, then
3B = |A]|B]cos90°=0 ( cos 90y |
each other, if their dot prody

Thus, two vectors are said 1o be perpendicular (0
is equal to zero. . oy

(iv) Scalar products of unit orthogonal v:.’ci{).".ﬂ' 0, Js k :

As already mentioned in article (4.13), i, and k arc unit vectors a-l(}ng the
three axcs of rectangular co-ordinate system. They are mutually perpendicular
cach other. Applying the above properties (if) and (iif) of scalar product to these
vectors, we have

A

fd=7.7=FkPk=0)1)cos0°=1 :
or - P=f=R=1, . (4.13)
and f.j=Jj.k=1k.i=()1)cos90°=0 ..(4.14)

e

—

(v) Scalar product is distributive

Scalar product of a vector 4 with sum of the two vectors B and C is written
as follows:

. - — - - = - -
i.e, 4A.(B+C)=4.B+4.C ...(4.15)
(vi) Scalar product of two vectors in terms of rectangular components.
W _) -’ - .
- Writing vectors 4 and B in terms of their rectangular components, as
— " ~ -
A=AJd +4;5+ 4k

- = = -
and B =B +B,j+B,k
- = < 3 = N " i f
we have A.B = (4, +4,) +A,k).(B,i +B,j +B,k) |
Using distributive law proved above, we get
- -

AB=ABI.i +4ABI.j+4B 7k +4B .7 +AB,] ]

| AR TR 4B R T v AB R+ A
Applying the results of eqns. (4.13) and (4.14), we have

—.) §
A.B=AB +4B +4B,
Thus, the scalar product of two vectors i

components along each of the rectangular co-
- -

(4160

s the sum of the products of i_he"
ordinate axis.

Also A.B=A=42+ 424 42 | |
1] . ', z
: So the magnitude of a vector in terms of its rectangular components may be
written as - i




@,) yector or cross product of two vectors

~ -3
vector product of two vectors 4 and B represented

5 — -3 -
wir A % B and read as 4 cross B, is defined as 4

<ingle vector whose magnitude is equal to the product of
agnitudes of the two vectors and sine of the smaller angle
g henween their directions (Fig. 4.15) and whose direction ;-

is pg;pendfcu[ar fo the plane containing vectors ;; and § A
. " . — 5
The sensc of direction of this vector ( 4 x E) is given b_}' Fig. 4.1 i Cmsst product of
s . . VO VECLors
the motion of right handed screw which rotates vector A

_..)
towards vector B by the shortest route, The screw should be placed with its axis
pcrpcndlcular to the plane containing the two vectors.

- _} )
In Fig. (4.15), vectors 4 and B are drawn in the plane of the paper. If vector

- —
A is rotated towards vector B by means of a right handed screw, the screw will
move normal to the plane of the paper in the outward direction (i.e., towards the

reader). If we take a unit vector in this direction as 7, then by definition
- —

- o
AX B=|A4||B|sin® i ..(4.17)
Important properties of vector product
(i) Vector product is anti-commutative.

Let us consider B x 4. Its magnitude is |74'| [§| sin <TE1 éhe
0, which is the same as the magnitude of :3 X 3 For | & A
obtaining its dir_?ction, we shall have to rotate vector B s
towards vector A . This motion is clockwise whereas when s P

_} _)
vector A4 was rotated towards vector B, the screw had to g, 416 Cross product is
be rotated anti-clockwise. Thus the screw will now move ~ notcommutative
into the paper (i.e., away from the reader), or will move in .

: -
a direction opposite to that of 7 (Fig. 4.16) so a unit vector along B X 4 is 7.
Hence,

Fx A= —|B||4|sin0 7 ..(4.18)
Comparing (4.17) and (4.18), we have
- - — -
AX B=-BX 4
Thus :Z X -ﬁ and § X ;1’ have the same magnitude but have oPpo§ite directions.
Hence vector multiplication is not commutative as scalar multiplication. Note that

order or sequence of vectors in cross product is important.

(ii) Area of parallelogram and vector area = .
If the adjacent sides of a parallelogram are represented by vectors 4 and B,

shown in Fig. 4.17, then
Area of parallelogram = Bas¢ X vertical height

—}
= A1k
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= |.~;)(|1$|si11 0)

= . =

=|d X B
Thus, the magnitude of the vector product is !
cqual to the area of the parallelogram formed by the |
two vectors as two adjacent sides, & i
We can represent an area as a vector as we can LR
associate a direction with it, although not in the same
SeNse as we associate a direction with displacement
or velocity ete. With a plane areas, a direction is
associated perpendicular to the plane of the area.
Since a perpendicular to a plane may have two
directions, one out of the plane and other into the plane, so these two directions

can be associated with a plane. In both the cases, the area vector may be written as
cross product.

Fig. 4.17 Arca of the
parallelogram is equal to the Crosg
product of two vectors representing
two sides of the parallelogram

- — X - =0 -
Thus 4 X B represent the vector area of a parallelogram having 4 and B g5
its adjacent sides.

(iii) Area of a triangle,

If the sides of a triangle are represented by vectors A and B as shown in
Fig. (4.18). Then '

" s 1 .
Area of triangle = = X base X height

1 B,

= 4xh h=Blsm9
2 8 |
1 _ A

3 = — ABsin© 1, =

2 Fig. 4.18 Area of triangle = ;(A x B)
1 = = -

= -_)—lA X B

(iv) Vector product of two parallel/collinear vectors.

- . =
When vector 4 and B are parallel, 8 = 0°

and when antiparallel 6 = 180°. In
either case sin 8 = 0.

— - - S
AxB=i|d)|B|=0

(s sin0°=0)
Thus two vectors are said to be

vanishes.

Obviously cross product of a vector by itself is ze

_.,.’

A

parallel to each other, if their cross product

1o, i.e.,

_)
X A=0

(v) Cross product of two perpendicular vectors

- -
when two vectors 4 and B are perpendicular to cach other, 6 = 90°, so that

— -
A x

B =|A

Y

-
| B | sin 90°

- o
=|4|B]n




Thus, lh; cro;s;]f roduct of two perpendicular vectors is equal to the product of
the magnitudes ol the two vectors and having the direction of unit vector 71 where

p is perpendicular to the plane containing vectors 4 and B and whose sense is
getermined bY right handed screw.
Conversely, the two vectors are said to be parallel or collinear if their cross-

roduct is zero.
(vi) Vector products of unit normal vectors i, J, k.

A‘pplying above properties of vector product to the orthogonal unit vectors
fs}’k’we have

Ixi=jxj=kxk=0 ..(4.19)
i x j=11sin90°k =k

Similarly, jxk=ikxi=]
gil jximnk, b xje=tix k=] (420

It is important to note thét in these products, the
eyclic order 1 j k i J ... (Fig. 4.19) should be strictly
observed. By multiplying in cyclic order, we get positive

products, (for instance ixj= it:) and by multiplying k
in reverse cyclic order, we get negative product (as an

—

Fig. 4.19 Unit vectors i j

example k X j=-i).
and k in cylic order

(vii) Vector product is distributive
- - -
Vector product of a vector 4 with sum of two vector B and C is written as
follows. |
" 5= - - —3 = - -
ie, . 4 X(B+C)zAxB+AXC ...(4.21)
Note that the order/sequence of vectors in cross product is important. The usual

laws of algebra will apply only when proper order is m

(viii) Vector product in terms of normal components.. . |
Using distributive law, we can have vector product of two vectors in compenent

form as:
A% B =47 +4,] +AF)X BF +B,f+B:K)
~4 B x 1) +AB(I x [)+ABLi X By+4B(J x )+ 4B, ()X ])
- + 4B % £)+ABk x 1)+ 4Bk X §)+AB(k X k)
Applying the results of equations (4.19) and (4.20), we have ) .
T x B = ABE ~AB,] - APk + 4B+ AB] —AB,i
= (4,B.-4:B)1 + (4B~ A,B) ] + (4B, ~ 4B

aintained.

ten in the determinant from like
7k

AxB=|4, 4, 4
B, B, B,

This can obviously be writ
i
..(422)

Z
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(xi) Illustration of vector product

There are certain physical quantities, like angular
momentum, torque, etc., which may be expressed as
cross product of vectors. Let us consider a particle of
mass m situated at the point P (Fig. 4.20), at a particular

instant of time. Let this particle has a velocity vector -
Fig. 4.20 Angular momentum

- ﬁ . _ .
and is acted upon by a force vector_/:' at that instant. product of 7 and

Then its Imear momentum vector 2 is glven by the

product m V Further angular momentum L of the particle is defined as the vector

e

product of position r of the particle and its linear momentum 2 .
— —3
ie., L =7 x ]J

Also torque T on the particle, i.e., moment of force F acting at a position

vector r relative to the origin is defined by the relation.
e —7 -
TV=raX B
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WDUCT OF THREE VECTORS

The vector product of two vectors B and C :s a vector. So it can be multiplied
| Cﬂm scalarly or vectorlally with a third vector A Thus there are two types of mple
| products: one A (B 4 C) 1s known athe scalar triple product (because B X C is
avector and dot product of A and B X C is scalar; so the result i 1s scalar) and the
other A X (B X C) 1s called the vector triple product (become B x C is vector

and cross product of A and B X C is vector; so the result is vector).
(a) Scalar triple product. Let us now consider

. I )
scalar triple product 4 . (B X C) and evalauate it.

- -
Let vectors B and C be represented by the

- -
sidesob and oc of a parallelogram. Complete the
parallelogram and then form a parallelopiped taking

._} _} . »
A along oa as shown in Fig. 4.21.

-5 9 -> 5

le¢ BxC=S8=nS . _
Fig. 4.21 Scalar triple product
where S is the area of the parallelogram obdc with

sides IB | and | C | and 7 is a unit vector normal to the plane of the parallelogram..

If A makes an angle 8 with S , as shown in Fig. 4.21. then A " (B X C) = A : S
Y
=A.nS=AScos 6 = hS
_)
where A cos 0 = A, the length of the perpendicular aa’ from the terminus of 4
on the surface of the parallelogram obdco.

3 (B X C) = volume of the parallelopiped 0b, dc, nm, la.
Hence, A (B X C ) or scalar triple product of three vectors represent the volume
ofa parallelopiped having vectors as adjacent sides.
Since any face of the parallelopiped can be used as base, so B (C X A) or

-..)
. (“l X B ) is also the volume of the same parallelopiped.

"}-—-}

4B x C)=B(Cx A)=C.(4xB)

oy gy
The scalar triple product is also called box product and is written as [ ABCl].



e e

" When the three vectors lie in the same plane, then the volume of the parallelopipeg
formed by these three vectors as sides, is zero, hence the condition for the three

vectors to be co-planar, is that their scalar triple product vanishes, i.e., 4 -( B x c)
=0

: - (9 =
Component form of A4 -(B X C)
From the formula of scalar products (eqn. 4.1 5), we know that

A.B=AB,+AB,+ 4B,

- <3 -5 . =D s SO ..
Thus, 4.(B X C)= Ax(g X E)x+Ay(B x C),+4,(B X C). ...(423)
From the formula of vector product (eqn. 4.22)

Pk
- - .
BxC=|B, B, B,

C, C C

- -
I(B X C)x‘ = Bycz-Bsz
- -
I(B x C),|=B,C,—B,.C,
- —
|(B X C)zl = Bxcy_Bny
Substituting these results in (4.23), we get

4.(B x C)= 4,(B,C,~B,C,) +4,(B.C,—B,C) +4,(B,C,~B,C)

...(4233)
which can obviously be written in the determinant form as
4, A, 4
- = o
A.(BxC)=|B, B, B
¢ & &

- 9

— i F
Note : A. (B x C) can also written by dropping the paranthesis i.e.,

- - - =

- —
A.(BXx C)= A:BX.C
) - 2 - - - - -5 - e
Itiswrongtotreat A.B X C as(A.B)x C because A4.B is ascalar quani
- =
and cross product of a scalar A. B with a vector 8 has no meaning.

2 Cychc order (Fig. 4.22a) 1B e keeps the scalar triple pmducr samé
but anticyclic order (Fig. 4.22b) reverse the sign of the product, i.e.,

A(Bx C)=BCx 4)=C.(4 x B)

T O I N . Bj
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MALAR AND VECTOR FIELp

called afield. Fields are of two types: one i e erEpl poiia I
on the nature of the varying physical quantity concerned,

A-sca]ar ﬁe.ld 18 a region, where a scalar quantity ¢ is associated with every
point in the region. Such a field is denoted by a continuous scalar function, Jt

is a function of r and is denoted by ¢ = ¢ ",'.’). Examples of scalar fields oy

‘ : - , distribution of electric potential in a
region surrounding a charged body or distribution of any other non-directed (scalar)

quantity. A scalar-field can be visualized by drawing imaginary surfaces passing
through all such points in the region for which the field has the same value. Such
surfaces are called equal or level surfaces. Example of such surface in case of electric
potential is an equi-potential surface, on each point of which scalar quantity electric
potential has the same value. Two level surfaces cannot cross each other, they must
be one above the other, because if they cross each other, then the value of scalar will

be the same on the two surfaces along their line of intersection, which is contrary
to our definition of level surface.

Avector field, on the other hand, is region in which every point is characterised
by a vector quantity. Examples of vector field are distribution of velocity through a
stream of water, distribution of electric field intensity round a charged body. Such
afield is represented by a continuous vector function, which at any given point is
specified by a vector of definite magnitude and direction, but both of which change

;s - - o
continuously from point to point. In general, a vector field is written as 4 = A(r).
Avector field can be represented by a set of curves, the tangent at any point of which
gives the direction of vector. Such curves are called vector lines or lines of flow
or flux lines. The magnitude of the vector at any point on the ﬂll)E line is given by
the number of vector lines crossing unit area drawn round that point normefl to fhe
direction of lines. No two lines of flow intersect each other,.because the direction
of the vector at the point of intersection will become in'defimte. | s

A scalar or a vector field may or may not change in time. A field which does
not depend on time is called sationany or s_teady state field. -

420 DIFFERENTIATION OF A VECTOR WITH RESPECT TO
SCALAR

@ere are certain physical problems, where ve
8 function of scalar variables. As an example,
€ expressed as a function of single scalar time. T

With Tespect to this single varible to give a'n.ew yeGLor, ith respect to time, let us
For finding the time derivative of position veelor Wi S fp m P to Q in time
‘onsider a particle moving along a curved path and reaching ro

ctor quantities are often expressed

the displacement of a particlg can
he vector may be differentlated



T g r—

At (Fig. 4.23). If we denote the position vector of 4

_>
Pby r (t)and Q by P (1 -+ At), then the average
rate of change of the position vector with respect
to time is given by

- - - -3 — -5
r(t+An—r(t) _ 00~ OP _ PO _ Ar
At At At At

and when At becomes vanishingly small, the ratio
-

r . - ’ . L .
AL attains a limiting value, which is the rate
t

- ¥ . z
of increase of r i.e., the differential of r With gy, 423 Deviative of 2 Vertor wics
- ok respect 1o 4 scalzs
: anr . i i
respect to time or e is found by dividing A »

by At and taking the limit as A7 — 0. Thus

d¥ _ fim [éz]
dt At—= 0L At

Now we can see_t_;[hat as At becomes smaller and smaller, O approaches claser

to P and the vector PQ becomes tangent to the trajectory of the particle zt time .
_>
_)
; : ; ro. : :
The differential of » i.e., — is a vector, because its numerator is 2 vectar
and denominator is a scalar.

In mechanics, this represents the instantaneous velocity vector of the particle
b 3
2 ar
ie, V=—
dt

The above argumeht holds good equally for any arbitrary vector -«; , whichs2
function of scalar 1, SO we havc

- -
dA = Lt Al+An-A(r)
ar At—0 . At
If we write A in the component form in a fixed co-ordiante system ie., A=

:A + _]A +kA then the unit vectors i, _;,I; arc constant and the components 4,
A A,, depend ont SO

—
dAd* dd, «odd; i idia
= X7 % y j+ Ay k
- dt dt dt dt
Thus the derivative of a vector with respeet to a scalar is equal 1o the veetof
sum of the derivatives of its components with respect to the same scalar




»4.22” GRADIENT OF A SCALAR FIELD -~

_’ —.) . . . "
Let ¢ (7 )beascalar field, where r is the position vector of the variable obervatigp

—', A ,: A
point A (Fig. 4.24) in space and is given by r = xi +yj +.zk where x, v, z are
co-ordinates of the observation point. We may, therefore conmdf:_r ¢ to be a functiop
of three variables x, y, z and write it as ¢ (x, y, z). Any change in the value of this

scalar function corresponding to the displacement d P , will depend on the direction
of displacement, as the rate of change of scalar function may be different in different
dircctions, i.e., rate of increase of ¢ may be greater in certain direction than others. It
is well known from differential calculaus that whenever there is a function of more
than one variable, we can have partial derivative y

of that function w.r.t. one of the independent |
variables. If y, z remain constant and x change,
: PRI ' '
the partial derivative o denotes the rate of - 4 dar B
; ™ 3
change of ¢ along x-direction. Similarly, g-)— and ﬂ dy
D o !
%‘-}- denote the rate of change of ¢ along y and z 4 e b X
z . . 0 )
dircctions respectively. So we can specify total
change in ¢ in any direction, say in moving from
— —
A to a neighbouring point B such that 4B = d 2
and using first order Taylor’s approximation as Fig 4.24 Gradient of Scalar field

9%, .3 3

do= —dx+ — dp+ —¢
¢ ox dy * i

Where dx, dy and dz represent the change in the co-ordiantes x, y and z respectively

as shown in (Fig. 4.24), so that

—
dr = dxi+dyj+dzk

It is evident that d¢ can be written as the scalar product of vectors.

X

09 ~d0 | ~dp A X .
(:a +Jay+kaz) and (dx:+dyj+dzk)



; - - 09 ~dd X i ; A
i€ d9 [""‘""]‘a—;‘l'k'gz-).(l'dr-}-jdy-}-kdz) ...(4.26)

ox
The first vector on the right hand side of equation (4.26)ie., i % + _192 +k 3¢
" dx “dy’ 0z
is called the gradient of scalar field ¢ and so expression for it is written as

_[:90 -00 90
grad —[——- ke TS Mok 4
; Ic.'-buc‘l-"c':}y-}. Bz}b

= a¢ 4 a¢ % § . : ;
 where V =i o + jg; + k§; 15 a differential operator and is pronounced as De/

or Nabla as stated in the above article. So equation (4.26) can be written as

-3
do = grad . O .. (4.27)
< PHYSICAL SIGNIFICANCE OF GRAD) ¢

—
@‘B’ be the angle between the vector V¢ and the displacement d » (Fig. 4.25) then
\the equation (4.27) can he written _

dy= |Vo||d r|cosB
where d¢ is the change in ¢ for a displacement . wfd@.
-3 Ed
d r or the rate of change of scalar function ¢ with N o
respect to distance in any direction is given by ©
.._..._ = qu)l cos 6 Fig 4.25 Angle between
dr " diiplscenist ot d 5and gred §
. Which depends on the direction of displacement, ~Pracement vector @r and gra

do _ =

Now we may write i (Vo). n where 7 is a unit vectoralong d r .
r

If 7 is along V¢ , i.e., when we move along V¢, then 8 =10, cos 6 =1and so

& is maximum. Thus, grad ¢ lies in a direction along which rate of change of ¢
r |

IS maximum and

[‘;—f)m - V4

Hence, the gradient of a scalar function ¢ is defined as a vector ﬁeld h.:.zving a
magnitude equal to the maximum space rate of change of @ and having a dlrecfw'n
dentical with the direction of displacement along which the rate of change of ¢.is
maximum,

Further if we move along a direction normal to vector
Vo.Fig.4.26, then 6 = 90°, cos 8 =0 and s0 46 = 0. In that
€ase, there is no change in ¢ or ¢ = constant, which defines ;
alevel surface. Hence it follows that V¢ is a vector normal . Fig.4.26 Level surface
fo rhe !f-’V&‘I Surface q) = COHSIGH9 ¢ = constant

-

dr vé



\ 423 INTEGRATION OF A VECOTR WITH RESPECT TO
SCALAR

The integration of a vector which is function of a single scalar \«ianable 1s done by
the use of usual rules of ordinary integral calculus, as shown below.

Let there be a vector function 4 of some scalar variable 7 and writing it as

' A ()=d, (l‘)! + 4, (f) J+A. (t) i , we define the vector integration as
- jA(r)d: [[4,(0f + 4, (1) ]+ 4, (OF1dt+ ¢

= i[4, (r)dt+;_[Ay(t)dt+k_[Az(t)dt+Z

SR
where ¢ is vector constant of. mtegratlon

If we have a definite mtegral _[ A (@) dt, thcn it will be evaluated as

j A(z)dzﬂj A (:)dm-kj’ A, (1) dt

The integrals which are frequently used in vector calculus are () line integral
(i7) surface integral (iii) volume integral.

(a) Line Integral. The integration of tangential component of vector along
a curved path is cailed line integral. .

F s

Consider a vector A = A (x, y, z) difined
throughout in some région of space. Let ab be any

curve drawn in this field and d “: a small segment of
length along it at any point P (Fig. 4.27), Further let

A denote the vector field at P and i its dlrectlon makes

an angle 6 with that of length segment d r .Thenthe ,

scalar product Fig. 4.27 Line integral of
_ vector along the curve ab
A.dr =Adrcos9

gives the product of the length segment and the component of :1) in its direction,

i.e., tangent to the curve. If the maghitude and direction of Z varies from point {0
point along the curve, then the integral

b —- - b ¢
A.dr=["Adrcoss ..(4.29)
a a

¢
is called the line integral of A along the curve ab.



Ph)’Sical Significance of Line integral

concept of line integral is useful in several branches of physics, for example:
- s ’ .
(i) I_f, the vector 4 denotes a force, F, then the line integral of the vector

A alon'g any pa’.th ab gives the amount of work done by the vector in
displacing a particle from a to b along the curve.

- -
(i) If A denotes ?he electric field E , then the line integral of }:" taken over ‘
the path ab, gives potential difference between the points a and b. ":

-3 o -
(iii) 1f 4 denotes the gravitation field g, then the line integral of z taken over
the path ab, represents. the difference in gravitational potential energies
between the two points.

- -
(iv) If 4 repreients the vector velocity v at any point in a fluid, then the line
integal of v taken along a closed path (represented as (ﬁ(v.d r) iscalled

- -
circulation of the fluid. In general, the integral @(A .d r) is called the

y e 7%
circulation of vector field 4 around a loop or closed path.
- -

(b) Surface Integral. Let us cosider a vector field 4 = 4 (x, y, z) and
imagine a surface S (curved or flat) drawn in this vector field. Let us now

.-.’
take a small area element dS upon this surface and let A represent the
value of vector field at the middle of dS (Fig. 4.28). Further, take 7 to be
a unit vector along the positive (outward drawn) normal on the surface

elment dS. Let 8 be the angle between y
the direction of 7 and ;l) as shown 21 1
(Fig. 4.28). Then the component p'f A
normal to dS is ;i’.ﬁ ='Acos 6. The

2 .
scalar product 4.7dS, which is equal to
the product of area dS and component of

—,
vector A normal to dS, is called flux of CON
o 4 Z ' zZ
vector A through the element of area dS. ‘Fig, 4.28 Surface integral of "
E - ; tor along surface area
An integration of 4.7 dS taken over the  Veoloraones s
entire surface S'is defined as the total flux or surface integral of 4 through

whole surface S, i.e.,

-_} '
[[4.ds =[] AcosBds = ([ (4, dS+ AdS, * A, dS.,) -(429)
§ s s S e g
[fthe integration is over a closed surface 5, then it denoted by (ﬁs A.nds.

ﬁtegal (Fln'x of a vector field)
£ surface integral, let us consider a

2 dS is drawn (Fig.4.29). If V

Physical Significance of Surface I
7 .Fﬂr understanding the physical meaning ©
: 1 (air o liquid) in motion in which a fixed are



denotes the vector velocitiy of fluid at any point (x,y,z),. '[her-l the _volume of the fl;
passing normally through an area element dS” in unit time is evidently €qual to gp,,
volume of the fluid contained in a cylinder of cross-section dS’ and length ¥ ia

ds’ das’

DR

Fig. 4.29 Flux of a vector field

V dS’. Same volume of the fluid will also pass through the ob.liqu.e area element 4g
in unit time. If 7 be a unit vector drawn normal to dS, and inclined at an anlge g

._) .
with the direction of ¥, then the component of dS normal to V, Le., dS = ds cos

8, so the amount or volume of fluid passing normally through element area 4§ in
unit time = ¥ dS cos 0

: o ; f
=Vcos0dS=V.h dS .. (430)

fi 1#s j - -
Inte_gral of this normal contribution, i.e., Hs V cos8dS = HS V .dS represents
the flow of fluid though the whole surface in unit time and called total normal flux,
—*

and the volume of the fluid crossing per unit area per unit time = ¥ .7 and is called
flux per unit area. - :

Similar ideas apply to other fluxes, e.g., electric or magnetic induction where
apparently nothing flows. : :

(c): Volume Integral. Let us consider a ta X a
closed surface enclosing the volume A
. ! ' ' A
V'in a vector field 4. If dV = dx dy n’
dz represent a small volume element
inside_this closed surface (Fig. 4.30), ' Volume
Py | b g .
then ”IA dV represents the volume fo)
4 AT :

or space integral of the vector field
4 :

: ; . Z
A for entire volume V. In Cartesian Fig 4.30 A small voliume element
components it is written as in a vector ficld

[[JCAd + 4,5+ 4f) dv ay gz
xyz

i ai g, dava k[ 4 arapa: o

Az

If ¢ is a continuous scalar point function in ¥, then ”j & dV is also known 85

volume integral or space integral. If ¢ = div 4 » the volume integral represents the

—
total outward flux of vector 4 over the surface bounding the entire volume.




27 GAUSS’S DIVERGENCE THEOREM

(This is very useful theorem of vector analysis, which enables us to convert a volume

 Infegral to a surface integral.,
It states that volume integral of the divergence of a vector field taken over any

: ; : 2
- volume V'is equal to the surface integral of the normal component of vector A taken
. over the closed surface S surrounding the volume V. Mathematically it is expressed as:

[[[vdyar = §a.as
V 8 ;
= gﬁ(z.ﬁ)ds ' .(4.34)
] |

Where ji is a unit vector alon g outward drawn normal to area element dS
. Itorder to prove this theorem, let us imagine the volume ‘¥ enclosed by the

' SWface “S” drawn in the vector field 3, be divided into a large number, say N of
: mﬁnitesimally small volume elements AV;, AV, etc., enclosed by the surfaces AS),
& .. ete resbectivcly as shown in (Fig. 4.33a). Further consider one of such
| Yolume elements, say ith having the volume AV and enclosed by the surface AS;.

Then outyarg flux of A over the volume AV; is given by
' - - -
(Div4) A¥;= [[4.d5,

[ : ar .
o (" Div 4 is the net outward flux per unit volume, prove.:d ccu!lcr.l)} -y
. 1 y the value
~Sequation ho]ds good for each such volume element, S0 by inserting the va

D(hle"': l,. 2’,,.N’ we get Simi]al' expressions for oulWﬂl'd ﬂllX Of vector ,‘1 thI‘Ollgh
. Volume clements, Adding up such expressions for all volume elements, we get



e —

-\. —3 1\- — -3
2. Div.han = ¥ ] 445, ~(435)
i=1 =1v7S,

The summation on L.H.S. of equation (4.35) tends to a volume integral in the
limit when N — « AF, = 0. je.

-\

NV r AT = T1IMv " -
\.I_‘}N ,-.:._,\\ A) AF; JJJ(T..-ﬂtH
-A‘_\,o i=1 P
25 - ! h *L -
e RV
e e 7/ —
VB B o £ ¢ AN W S U 0 B
BECINEC T NN G e sl B
t i ¢ e (i) A + it /
£ X p -
ds Pl
Common surface of
{(a) Common surface of (b)
volume 1 and 2 volume 1 and 2

Fig. 433 (a) Three dimensional view . (b) Two dimensional view

Further it is clear from fig. (4.33 (a). (b)), that all the flux integrals within'the
volume F” cancel. because the outward flux of two neighbouring volume elements
through the common surface are equal and opposite. therefore it contributes nothing

SN —_ i

towards A4 .dS. For example, for volume element no. 2 outward flux is indicated
by arrows directed away from the element and inward flux by inwards arrow, at
common surface. (Fig. 4.33a)@0 the summation on the right hand side of equation

P - t : 5 —
(4.35) will simply represent the surface Integral of vector 4 over the surface S

bounding the entire volume V, because each elementary area which is not included

in the bounding surface S is common to two volume elements.

Hence the equation
(4.35) becomes

[l dar - [[4.a5=[[Ci.nas
v S 3

Thus the total outward flux of a vector field from a cl
the volume integral of the divergence of the v
by the surface.

Gauss'’s theorem finds some important applications in electricity'h

osed surface is equal to
ector field over the volume enclosed




4,33 STOKE’S THEOREM

. _) f
(1t states that the line integral of a vector field A round any closed curve C is equal
—}

to the surface integral of the normal component of curl of vector A over anunclosed
surface ‘S’ having the curve ‘C’as its perephery Mathmatlcally it can be written as

(JSA.d r o= jj(Vx A_).dS .. (4.38)
C . 8 = S

Stoke’s theorem thus convert as surface integral into a line integral over any
path which constitutes the boundary of the surface. :

In order to prove this theorem, let us consider, in vector ﬁeld A an unclosed
plane surface parallel to xy plane and bounded by the curve C as shown in
Fig. 4.38. Let the surface ‘S’ be divided by a network of curves into a large number
say ‘N ’mﬁmtesmally small surface elements AS, AS,... etc. having curve boundaries
Cy, C, ... ete. respectively. Further, consider one such element (shown as shaded in

diagram) say ith, havmg curve boundary C, and vector area k AS; where k be the

positive unit vector in z-direction normal to y
AS;. The boundary of the element is traced I S
out counter-clockwise. <] ‘j?:i e

Now according to equation (4.38), the It Lt >

- e { | oy
line integral of a vector field ‘4 round the L—-j Ll &
boundary of unit area in xy plane is equal \\“*—-—/-/ A g
g _

to the component of curl A along positive 0 / £

z-direction. Thus the line integral of vector AS =HRas
1 (I i

_)
field A roung the boundary of ith surface 2

element is equal to the product of the normal Fig. 4.38 Two dimensional plane

E . Y
component of curl A and the area AS; i.e., Sifana it avedarneld 4




=3 - =3
G- =5

=(Vxd) . k as;

A similar pr%(l:]eSstil? a‘péalied to the other surface elements tracing them éll in
e. Then the above equation hold :
© (e same SeNS - q olds good for each surf:
- jfweadd all such equations, we have r g ey

._’

N 5 S5 N - - -
Ypd.dr =2 (VX A).kAS,) | ...(4.39)
i=1¢, i=1

| Itisclear from Fig. 4.39, that all the line integrals within the inteior of the surface
cancel, because Ehe two integrals are in opposite directions along the common side
| between tWO adjacent area elements. The only portions of the line integrals that
. gre left are those along the sides which lie on the boundary C. Thus the left hand
3 - - —

~ side of equation (4.39), will precisely represent the line integral of 4 round the
.~ periphery ‘C’ bounding the surface ‘S’. Further the summation on the right hand
side of equation (4.39) tends to a surface integral in the limit when
T NS e, A5, 0,ie,
Lt Y (Vx 4).k AS, =jsj(v xA).kdS

5;—0 ol

Hence the eqution (4.39) reduces to

- - e A T : '
(ﬁA Adr = H(_V x A).kdS which is same as eqn. (4.38)
C s ; ' :

. This is the Stoke’s theorem for a plane surface. .. -~ - ;- . Bounding-
. If the surface is three dimensional, like that a - curve
. butterfly net or a hemispherical vessel where net ..
©  orvessel forms the surface and the supporting rim
. oropen end is the curve bounding the surface as {
. shown in Fig, 4.39, then the right hand side of ;
. tquation (4.38) will have all the three components 4 Sedus]
~ and we will get o :

- = - - A "
(ﬁA il B H (Ve )i ' Fig. 439 Three diménsional
- : surface in vector ficld

= H(Vx A).i d._‘;
S

Where 4 is unit vector normal to area element ds. '-
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Eli;:ctmstatic Field
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FLECTRIC FIELD

The space surrounding a charged body is affected by its

ence and we speak of electric field existing in this
space. Now-a-days Coulombian forces acting between
two charged bodies are explained in terms of the field
concept as follows:
Ifa charge +q, is placed at any point, it sets up an
electric field in space Surrounding it. This field is shown
by dotted region in Fig. 5.1 This field acts on the charge

qzifplaced in the field reg)ion. This action of the field of q,
mﬁresults in the force F
the field acts as an interme

also imagine that g,

Fig. 5.1. Electric Field £
: 2 d i
that is experienced by 4,-Thus 500 poutt charge
diary for transmission of forces between charges. We can
—

sets up field, which acts on 4, and produces a force — F on it.
This, however, should not be misunderstood that field is merely an aid in
visualising the mutual interactions of charges. The field is taken to b

€ a self-existent
inreality and is a property assi gned to every point in space in the vicinity of which
one or more charged bodies are present.

52. ELECTRIC FIELD STRENGTH OR FIELD INTENSITY

Todefine electric field at any point in space that is to be examined, we place a small

test charge g, (assumed to be positive for convenience) at that point. Let us further

suppose that the total force experienced by this test charge due to_}other charges
._’

(caueg source charge) be £, The electric field strength denoted by E at that point
is defined-as the force per unit charge i.e., on the test charge,
i —

Tt it )

do
) ' " i .
The electric field strength £ is a vector quantity because F' is a vector and g, is
. _“, . . - . - _.
dscalar, Direction of E is the direction of F, that s, it is the direction in whicha _
Positive charge placed at the point of observation would tend to move, if free to do so;




Electrostatic Field

MECTRIC FIELD

The space surrounding a charged body is affected by its B el
presence and we speak of electric field existing in this
space. Now-a-days Coulombian forces acting between
two charged bodies are explained in terms of the field
concept as follows; € =

If a charge +q, is placed at any point, it sets up an
electric field in space surrounding it. This field is shown '
by dotted region in Fig. 5.1. This field acts on the charge

9, ifplaced in the field region. This action of the field of g, - Fig. 5.1. Electric Field £
© due to a point charge

ong, results inthe force F thatis experienced by ¢, Thus
the field acts as an intermediary for transmission of forces between charges. We can

; -
also imagine that g, sets up field, which acts on ¢, and produces a force — F' on it.
This, however, should not be misunderstood that field is merely an aid in
visualising the mutual interactions of charges. The field is taken to be a self-existent
inreality and is a property assigned to every point in space in the vicinity of which -
one or more charged bodies are present.

5.2. ELECTRIC FIELD STRENGTH OR FIELD INTENSITY

To define electric field at any point in space that is to be examined, we place a small

test charge g, (assumed to be positive for convenience) at that point. Let us further

SUppose that the total force experienced by this test charge due to_)other charges
_)

(called source charge) be F . The electric field strength denoted by E' at that point

'S defined-as the force per unit charge i.e., on the test charge,
_’

Bt 5.0
9o '

- i g9 .
The electric field strength E is a vector quantity because F' is a vector and g, is

a 3 g = . P - . . - .
p:c?%ar' Direction of E is the direction of F, that is, it is the direction in which a unit
Sitive charge placed at the pointof observation would tend to move, if free to do so.



_53. DERIVATION OF ELECTRIC FIELD FROM
ELECTROSTATIC POTENTIAL (Electric Field as Gradien;

of Electric Potential) ' " it B o
It is known to us that potential is a scalar function. Its value is different at differep
points. We have also seen that the potential, function is derived as the line integal of
electric field, if electric field is known to us. But we can also proceed in the ofhs
direction, 7.e., from potential, we can derive electric field. We will see that the electr;
field will come out to be gradient of electric potential. = .

: ! %

‘Let us now calculate the electric field E if potential function ‘¥ is known
throughout a certain region :ofjspéCe“i'.Let._thé value of potential at two neighbouring
points 4 (x, y, z) and B (x + dk, y + dy, z + dz) distance dl apart in the region be 7
and V + dV respectively. Then the change in potential V, i.e., dV in going fromA
t0 B is given by % ¥/ eE & b BE Sy gl gl GLaCER Y S

et ol o i vl -
O AT QY e _ :
wher F 3 and'?g;' represent r?t?'of ¢h§nge_0fpotential Valong x, y and?

axes respectively.

.Comparing equations (5.3) and (5:4), we have

S dl oV
~E.dl = —gy+ 9 4 0V
. ax aydy+ az dZ



LLOVIRJOLALIL TLIELL

.=[58V+}'8V+133V (Fdx+ jdy+ kd2)
dx'ii 1 Oy 9z :
- - ] L n
Here, dl is a small displacement, so d/ = i dx+ jdy+ kdz
- = (. B -
-E.d = faV+jaI +kaV].dl
\ Ox “dy oz
> (:9V 0V »aV) [Aa 2 0 ~8)
—E={i—+ij—+k =|li—+j—+k—|V
> \I ox 7 dy 0z ox ~dy Oz
. =VV
—)
0t E =—VV=—grad V 2aa(3:5)

This is an important result which indicates that the electric ﬁ_eld at any point
is the negative of the gradient (space rate of variation) of potential at that point.
The negative sign indicates that the electric field points from a region (-}f pqsnwef
potential to a region of negative potential, whereas grgd ¥ points in direction o
increasing potential V.

; -
IfE, E and E; are the components of E along x, y and z-axes, then from
xt Ty
equation (5.5), we get

i OV oV ".aVJ
A . I 4 s
i B+ jEy+ kE, (1 Bx+Jay >,
Therefore, ,
5 o
¥ ox
E =—§—p:r - ... (5.6)
R -_
L g
27 oz :

i ) y —
Thus if potential function V(x, y, 2) is knqwn; the components of E found

N
by taking negative partial derivaties of the potential function z:md from them E
can be found. Equation (5.5) is very useful, because it makes it easy to compute
E at a point by first finding an expression for the potential at that point and then

—.; ‘. - . - -
using this equation, we can compute E directly. This simplification is due to the
fact that potential is scalar and involves algebraic summation rather than vector

LQiimmatinn
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4. POISSON’S AND LAPLACE

o i ace

The Guass’s law in differential form in free Sp

sk

v f =—
div o
Ei i intentsity and
where E is the electric field intents s o,
region of space, €, is the permittivity 0 . | |
. sed as the negative of the gradient of potentiy|

p is the volume Charge_dellsity in -

-
Also electric itensity E is expres
(Equation 5.5), i.e., 2 e
=—grad V
Therefore, Gauss’s 1aw reduces to |

: div grad ¥ = b, ¥

T

ottt VOV =i it Bitsdio oo R

Oty i AY = i S o 24 w2 e (5)
B |

This equation is called Poission’s equation for the electric potential and gives a
relation between charge density and the second deriv'ativ; of potential. In cgse.s.u,,
this equation is written as i '

VIVt SOt i b (58

In cartesian co-ordinates it is v'vri'ttcﬁ as e, ey

IV ¥ B p s R

—t— =

ox dy dz g | .
The general form of Poission’s equations is :

Vio=fGx2) (59

potential function in the space between the conduc
this equation,

g tf't f}:nctlon which satisifies Lap.lace’s €quation is cajled “spherical harmonic
a c w}f ._Thc average:- value of function x,y,z) satisfying Lapalce‘s equation 0v¢!
y sp erltall surface is F:qual to its value at the centre of the spherical surface. This



important property of this equation has helped in solving many complex problems
in physics. _

From mathematical vie_vy point, the subject of electrostatics is mefely the study |
ofthe solutions of these equations. Once ¥'is found, the electric field can immediately
be found by equation 5.5 > ' :



J.S./ELECTRIC FLUX 1% 0 f b |
d in article (4.23b), we introduce the idea of electr,

Analogous to the flux discusse r
flux. For this purpose, let us consider an electric field E in space and in thig

Closed . £ EREIEIE 5
surface S @ .  () it ©)
- ; ; ‘
* Fig5.2. (a)Electric E through close surface (b) Surface divided into large
i _}

number of small elements (c) Direqtiph of small area vector ds
> L i " ‘ol

space some arbitary closed surface, like a balloon of any shape S be immersed in the
electric field. Fig. 5.2(a) shows such a surface and the field b_eing suggested by few
field lines*. Let us suppose that the whole surface is divided into a larger number
of small elements [Fig. 5.2(b)], which are so imall that over any one element, the

surface is practically flat and the vector field £ does not chahge appreciably from

one point of the element to another. The area of each element has a certain magnifud®

and a unique direction, which is outward normal to its surface (since surfacé is

closed, so normal is from inside to outside). If the magnitude and direction of arc?
—

of one such elements be represented hy. vector dS [Fig. 5.2.(c)], then



the electric flux over &S is defined as df, = E .dg = E AdS
where 71 i @ un.it vector nEJnnal to-dS. It will vary from one element to naother
in accordance with orientation of dS on the surface. The above product is a scalar
number. Il ok

Letus novtf_add up the flux throug all the elements to get the total electric flux
through the entire surface, which is a scalar quantity and we shall denote it by ¢

y
0x= Y E.idS .. (5.11)
all d§ .

Further let the .elements becon\le smaller and smaller in size i.e., ds — 0, the
sum given by equation (5.11) will tend to a surface integral taken over the entire

closed surface. Thus

= 1 s = -}.n
Or dslfoag’SE'_"dS (jﬁ)ErndS

.. (5.12)

=<ﬁEcosBdS, . ' ERSE )

Yy
where 0 is the angle between vector £ and vector n.
The equation (5.12) gives the total electric flux through the entire surface S.
It may be noted that flux through a particular element is positive, zero or

T o e =
negative depending upon the orientation of £ and dS of the element. Thus flux

- T
will be positive, if angle between E and dS is acute and negative if the angle is

obtuse. If the angle is g—_ , the flux will be .zéro,

- Fora closed surface, (i) if E‘ is directed outward at every point on the surface,
 angle 8 between £ and dS is sciite at every where on the surface, [Fig. 5.3(a)],
and E .d; is posit—ilve and hence flux ¢ over the entige surface is positive
(i) If E is directed inward, then the an_gle 0 betwéen- E and dE is obtuse

-
every where on the surface [Fig. 5.3.(b)] so E .dS is negative, hence the flux ¢
over the-entire surface is negative., The unit of electric flux is measured in newton

meter? per coulomb (Nm?C1).

Fig. S.3(a) The electric flux through surface Fig. 5.3(b) The flux through S is negative
— -
when E is directed inwards

Si ‘e -
18 positive, when E is directed outwards )
I =

e

/
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\}echuss’s THEOREM OR GAUSS’S LAW IN
ELECTROSTATICS

- ) E
Qccording to this law, the total electric flux of electr ic field E over g Closeg

surface is 1. times the total charge () enclosed inside the closed surface, if the

charge is zy;,[ig in the Vacuum, where €  is the electric permitivity of the free spa,,
ie., :

0= §EAds=o- (1

The charge inside the surface may be a point charge or 2 continuous charge.

distribution. Further, it may be noted that there is no contribution to the total electric
flux, if the charge is outside the closed surface S.

Proof: Let us consider a single positive point charge + g placed at a point 0,

inside any closed surface S (of any shape). Let dS be a small area element dS of!

surface S at a distance r from ¢. Let do by a small solid angle subtended by dS at

dS cos6 s e . i . i
O, then do = ———, where 0 is the angle between electric intensity vector E at
dS-and 7, the unit normal vector over dS

The small electric flux through surface d is

-3

do= E.i dS.

where st (5.14)
g LG

where 7 is a unit vector in the diretion of vector 7

¢ _ z |
Th ctric flux ov . ) _,
us ele _ er the clq_sed surfacefS' _13 N A
0= (ﬁ E AdS any shape enclosing
s P L. a point charge
y £ :
1 dne, 2 . _(From relati 4

3 1 .4 | " & .
= (ﬁMteo -;cosBdS (as F.7i = 1.1cos B = cos 6)

S ¥
= ‘ﬁ—l—qdw= ! mngm - - 1
34"?0 4t g, ]

=y 4m, where 4 is total solid angle subtended
by surface S at O .

Hence 0= 9.

15)
= 5



Which proves Gauss’s theorem
If instead of one point charge g, there are a number of
arge 9y Gy -4y 3S shown in Fig. 5.5, enclosed by a
qurface S; then ea_ch charge will contribute to the flux.
et flux contribution by ith charge be

°q; &g, eq,

*q, g

4’5. o, i Fig. 5..5 When closed surface
i g, contains no. of point charges
Then the total flux
- L L
_ - o
g gSE.na'S_ angi = Eg‘-:s_ (gt 408 %:)
s i=1 i=1%0 0
G
€o _
Where Q is the total charge inside the surface, so
—lr | | ‘
0p= gﬁE-ndS=g- ' ...(5.15a)
i € |

Thus equation (5.15a) gives the total flux through a closed surface cnclosing
the net charge Q lying in vacuum. This equation implies that total number of lines
of force originating from Q and gutt_ing a spherical surface surrounding it is

5 sl . Y4 €9
It means that the total number of lines of force originating from a unit charge and
cutting a sphere surrounding itis —. | |
€o ot |
The closed surface taken in the electric field is called Gaussian surface.
If the charge O lies in a medium having dielectric constant K, then equation

(5.15) is modified to

= @QE.ndS=—— ' ...(5.16)
¢E ¢ n Kgo | .
If the algebraic sum of-the charges within th_c:surface is zero i.e., O = 0, then

¢‘E =0 ‘
If there are some charges outside the surface, then these charges do not con-

tribute to the value of 0. This can be easily proved as under: |

g situated at ‘0" outside the closed surface. Let

11 solid angle do cut the closed surface at two

B respectively (Fig. 5.6).

Let us consider a point charge +
a elementary cone from O with sma
tlements of area ds, and ds, at the points 4 and

————
-----
-
——
o
-

+§'O Aw

enclosed surface

Fig. 5.6 Point charge lies outside the
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PR ; d, so the flux fr .
As at A, the electric field £ 15 directed inward, Om the lnter%pt

o ST
. vor A £ tward, so the flux from 11
dS = =992 AiB the clectricfield £ is directed o1 e ingerge,

4me,
d Sz = qd®
4me,

- d
gdo  qdo _

Total flux through thes¢ intercepts dme, 4me,

This also holds good for any other cone drawn from O Intercepting the closeg
surface. Thus the total flux over the whole closed surface is zero, When the charg,
lies outside. This is quite evident because when the charge lies O}ItSIFie, the tofy)
number of lines of force entering the surface is the same as that leaving it, therefore
there is no net flux through the surfacs_. i
Differential form of Gauss’slaw .~ = =
Now when the charge has a continuous distribution over a volume v, if p s
charge density (i.e., charge per unit volume), then the total charge within the closed
surface enclosing the volume will be givenby .~

g Q=de?)\r'§.|. g
Substituting this value of Q in'relation (5.152), =~
t 1 VAR LS EEPioR DN O S PR L R SO & AT TEI N P
8575)55 ds =-“JP“'.U---_ T N .(5.17)
& gt ol gl
‘But from divergence theorem, ;"= 4 "y 40 X |
S v ' .

Comparing the relations ('Sl.l’/”).and. (S 18), 1»I"c.ré:. have
J(VE)dov = —[pav (519
VAL AN ot gty o '

a c'ontinuous‘ charge di'stribilti.on of charge per unit volume s(charge density) p- THE
above. €quation is true for any arbitrary volume, The integral on the two sides o
€quation (5.19) must be equal ' Y h e g = |

Hénce ' VE=.P



“ELECTRIC FIELD AT A POINT DUE TO A UNIFORMLy
CHARGED SPHERICAL SHELL

Consider a thin spherical shell of radius R and centre O. Let a charge + g e uri.
rmly distributed over the surface of the shell. The electric field due to chargeq
spherical shell is radially outward because g > 0'and is spherically symmetric. Let
us find electric field at point P distant r from the centre of the spherlcal shell,
(1) When pint P lies outside the Sphencal ‘shell.
‘To calculate the electric field intensity at the point
P, distant r from O, imagine a sphere S with centre,
O, radius 7, so that point P lies on the surface of the
sphere, which forms a Gaussian surface (F ig.’s. 8). As™ _
all points of Gaussian surface are equldlstant fromthe "\
surface of the given shell, from symmetry, we know

that magnitude of electric field at all points on this ™
surface must be same and directed radlally outward : _:18- i-s Eﬂlfﬂrlm}l]yn
as is positive (g > 0). ;i et b by e, CHATEEd spherical she

Consider an area element dS around the gwen pomt P. The electric intensity
E at P and unit vector # (normal to dS) both act m the same direction.

do.= E A =EdS
and the total electnc flux through the whole of Gaussian surface is

gﬁEnds chEdS EQdS =E x 4nr?

(ﬁdS = surface area of sphere of radius7) .

Since the charge contained by the Gau551an surface is g, according 10 :he
Gauss’s theorem ;

Ex4m?= L (r>R)

€ |
or E= 14 A (5B
4me
- : i
In vector notation, E = L _‘IT o - e




Clearly, electric intensity at any point outside the charged spherical shell is such,
s if the entire charge on the shell were concentrated at its centre. If ¢ is uniform
- surface charge on the spherical shell, then

q = 4nR’c
substituting for q in equa. (5.26), we have
- 41 R? '
B="RKC 0 r——R—ZF C(52T)
4meyr €y r°

(ii) When the point P lies on the surface of spherical shell (i.e., r = R). The
Gaussian surface through point P will just enclose the charged sphencal shell
Therefore, according to Gauss’s theorem.

Ex4nRr= 1
€o
| [ g
E= — . ...(5.28)
gt o | | prys;
Since g = 4nR%c, so
= 2809 : ety 54(5:29)
aneg Rz., €o
- - 1 S0
In vector notation E = 4 27

(iii) W?zen point P lies inside the spheri- v
cal shell. In such a case, the Gaussian
surface is of a sphere of radius r (<R), as the _
charge inside a spherical shell is zero, so the
Gassiuan surface will not enclose any charge
1€,9=0.

0 1' l' 0 r(Distance from the centre) —»
Therefore s A= I i

€ ¢i 2+ 7 U'Fig, 5.9 The variation E of duetoa
o E=0 (for F< RY LA DA) uniformly charged sphere

Le., electric field inside a spherical shell is always zero.
Thﬁ variation of electric field 1nten51ty E with distance from the centre of a uniformly
charged spherical shell is as shown in Fig. 5.9

_SUELECTRIC FIELD DUE TO A UNIFORMLY CHARGED
SOLID SPHERE
@Onsidel‘ an isolated solid sphere of charge g having radius R and centre O. Sup-

PS¢ we are to calculate electric field intensity E at any point P at a distance r
Mits centre O,

() When point P lies outside the sphere of charge. With O as centre and r as

dluls imagine a sphere S, which acts as Gaussian surface (Fig. 5.10). Let E be
electric field at point P due to the sphere of charge g. It is evident that the field
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due to the sphere charge is spherically symmet-

ric. At every point on the Gaussian surface, the ‘

field has same magnitude and is along normal

to the surface. : !
Therefore, total electric flux through the

Gaussian surface is given by

. ) i\ : | o S N g ‘ G .
0= $F-a5 = P as Sy
s E { ;
- E‘i o rz. . Fig. 5.10 Uniformly charged soliq sphere
According to Gauss’s theorem, R v
Exdn?= L ) i .+.(5.30)
€ '
E= —1-%(r>R). ' .{5.31)
471:80. F

It is the same as that a distance r from a point charge g. It means that for points
outside the sphere of charge, the sphere behaves as if all the charge on the sphere
were concentrated at its centre. If p is the uniform volume charge density of the
sphere of charge, then & ‘ '

Charge inside the sphere S= volurrie of sphere dfcharge X volume charge density

ie., _ = -3-:rtR3p e ...(5.32)
AR L (5.33)
ameg3 gy 3%
! - 1 . 3.t Vi, ,
In vector notation, . - -—1—-—‘25-?=—p—-}i—i’ (for r>R)
_ dmey p2 0 € 32 8 ;
(ii) When point P lies inside the sphere of Charged
charge. In such a case, Gaussian- surface is spheri- e
cal surface whose centre is O and radius OP’ = E
(Fig. 5.11). If ¢’ is the charge enclosed by the Gauss- s
ian surface, then , b . :
’ =, 'inrj .
E Vg pa s
and the electric flux through the Gaussian surface :
according to Gauss’s law is ' LI Gaussian |
0p= EX4m2 .(r <R) _ crees
q’ _ Fig. 5.11 When the P"’i"_l undef
E= e A .-.(5.39) consoleration lies within the
0 TCr bist v sphere
4.3
S Tp
or . s o M . | .(5.35)

g4t 3¢,




Also ' ! i R3 XT_);'TU’ _qRB
92143
. qubstituting for ¢” in equa. (5.34), we have
& 4
g
R’ lw wgr '
£ 4 ...(5.36)
80 41‘5"2 41‘{80 R3
[n vector notations,
—— - -
P Pu Yr (forr<R)...(5.37),
. 35y dnR’e

From equa. (5.35), it is obvious
At the centre of the sphere, » =0,

E=0 ..(5.38)
At the surface of the sphere » = R, then -

from 5.37,
we have electric field at the surface of spherc
of charge

= Bp
3g,.
= maximum

°¢_1..
E=

q"-ﬁ

O r(Distance from the centre) ° 7t

 Fig. 5.12 Variation of electric field
due to uniformly charged sphere

...(5.39)

All the above results (5.31), (5.36), (5.38), (5. 39) are depicted in Fig. (5.12)
which represents the variation of electric field E with distance (r) from the centre
Ofaumformly charged conducting solid sphere')



MECHANICAL FORCE PER UN IT AREA OF A CHARGED
CONDUCTING SURFACE e |

CLet us consider two points P.and P’ lymg n Vacuum and

nifinitely close to the surface of charge density. Further
suppose that P lies outside and P inside the conductoras |
shown in Fig. 5 14 The magmtude of electrlc ﬁeld atPis

givenby E = 8— (accordmg to Coulomb s theorem) and
3 |

may be thought of as composed of the foll'ong't'wo parts:’

(7) electric field E at P due to charge on bmaﬂ part of
the surface area sa AS very near to the Fig. 5.14. Charged
¢ iy pomtE, conducting surface

'\'XX



(i) electric field E; at P due to charge on rest of the surface of the conductor.
As these two fields act in the same direction, so
- c
=g = .. (5.42)
. o i ’ 0 :

paw cqnmder the point P’ lying just inside the conductor. The electric field at
P’ also consists of two parts. '

(i) The field P’ Que to the charge on the area element AS is —£. This part of the
field is reversed in direction because P’ lies on the opposite side of AS.

(if) The field at P due to rest of the surface is again E, and remains unaltered

~ i direction. _
Thus the total field at P’ is —E, + E, which is equal to zero as £ lies inside the

conductor i.e.,
-E,+E,=0 or E =£E,
Putting this in equation (5.42), we get

-

E1+E2=2El=2E2=-(i

| &g
(0]
or E =E2=.__
. 2¢,

: p - " c
That is, a unit positive charge on AS experiences an upward force oy due
€9

to the charge present on the rest of the surface. This force acts along the outward

drawn normal to the surface AS.

Total charge present on the area element AS = GAS.

. Force experienced by the area element AS of the't_:harged surface

1 | 1 a2
B A e
- . 28 28,

ced by an area element AS of the charged

This is the mechanical force experien .
r unit area of the charged conductor is

conductor. Hence the mechanical force pe

2

0)
P.=—" : - ot (5.43
4557 (5.43)

o]
But from Coulomb’s theorem, = — 0r0= g.E.
€9

Therefore equation (5.43) may be written as

2
EF ... (5:44)

Nm™

—

Py
. The direction of this force will be al
urface of a charged conductor is thus always un

" In a medium of dielectric constant (electricre
44) becomes -

ong outward normal to the surface i.e., the
der electric pressure.
lative permitivity) K, the equation

2
goKE ... (5.45)

Nm™

=

E




f demonstrating the electrica] Pres

. 4 0 .
Oiielofsipmetialicsing & s bulging of a soap by
n

experienced by the surface of a charged conductor
charging. . g s
5.14. ENERGY STORED PER UNIT VOLUME IN AN ELECTR;
EIELD it Sl SHe e ; pu |
As explained above, the mechanical force per unit area (cquat_lqn .44) eXperieng, p
by a charged surfaée put in vacuumris‘glven by
i g
Pemty

- Mechanical force on the element of area AS is
given by :

' nt AS is moved normally
Now if the area element T <\t Fig, 5.15; Energy Stosd e

through a distance Ax against the electrical force F  Unit Volume in an Electric

(Fig. 5.15), the work done is given by L Field
! . i ar il e
W= EOET-AS Ax . |
The volume swep.t tﬁfdu;gh = AS Ax el s ]

| | . . .. 2 '.r. e : 8E2 '
Hence the work done in producing unit volume of the field is 02 , Which

is the energy stored per unit volumeof themedla T}I'illlls“'the energy stored pér unit
volume of the media = 02 Jm=3. This energy appears in the form of energy of

by
A

dielectric intact.

If the conductor lies in media of dielectric constant K, then the energy stored
E’Ke D
Jm3,

per unit volume of the media =

Selution. Radius of the soap bubble, r =- lem=0 61 m
Surface tension =3 x'102

As the pressure inside and outside is the séme, S0 mechnical pressure of the
charged bubble - 3 ' ety g : '

m!,




o _4r
or 2g, r
which o is the charge density.
If ‘g’ be the charge on the surface of soap bubble, then
; q '
0 ——
4mr?

( q )2 i 4T
X =
4“?‘2 280 r

,_ 167%r* x2e) x 4T _1287%°T
r 367 10

- I S 2
gg=————=CN'm
[ " 36mx10° )

or ‘ q

_ R2xn T
- 9x10° ,
- 172 e
- ' '321'CI’3T : ) 4yl
or = A5 O = ——
1 (9><109) ( (L 310 2

001(. 22 001x3x102)?
2X—X :
10* 7 10 -

(132x107 )"
70

(132 )uz
70 -

x1078 x 1.373 = 1.830 x 10‘9

4
= — X
3

X
—
=

&

I

Il
Wih Wih w|a
X
—
<
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PAPER - 1T
UNIT-TI
Magnetostatics

T e e e s

SYLECABUS |
Magnetic induction, Magnetic flux, Solenoidal nature of vector field of induction,

3 - =
Properties of B (i) V-B =0, (ii) V x B = uJ (Electronic theory of dia and _* -

paramagnetism, Domain theory of ferromagnetism/(Langevin’s theory), Cycle of
magnetization Hystresis loop (Energy dissipation, Hystresis loss and importance

of Hystresis curve).




Viagnetic Fields s

((%ONNECTION BETWEEN ELECTRIC AND MAGNETIC
PHENOMENON |

The s(?ience of magnetism evolved from the observation that some naturally
occurring stones such as magnetite has a property of attracting small bits of iron

and when a piece of this ore (magnetite) is suspended freely, it points approximately
in the north and south direction. The word magnetism, comes from the district of

Magnesia in Asia Minor, which is one of the places where these stones were found.
No connection was known between i 3
: . . —- —» = — o
electrical and magnetic phenomenas till 1820;+ . AC T
N

when Oersted first noticed the magnetic effect
of current by observing thata pivoted magnetic.
needle gets deflected when a steady current is
passed through a wire kept above or below and
parallel to it (Fig. 6.1). The deflection of the
needle must essentially be due to the magnetic  Fig. 6.1. Magnetic field due to current
field round the wire carrying current. Oersted Carrying conductor

thus showed a connection between electricity
and magnetism. He said that all magnetic effects (temporary or permanent) arise

fiom currents. This showed that current is the basic cause of magnetism as charge

is the basic cause of electric field. .
~ Twelve years later, Faraday observed that a momentary current is produced
ina circuit when the current in nearby circuits was being started or stopped. The
same effect was observed by moving a magnet towards or away from the circuit.

d the magnetic effect of moving

hus we see that the work of Oersted demonstrate ‘
(production of current) by

eleq'ric charges and that of Faraday, the electric effect '
g magnets. Now-a-days, it is believed that all magnetic phenomenon result
om forces between electrostatic charges in motion and the magnetism cannot be

Cong; )
Sidered as a separate science-

6,
2. THE MAGNETIC FIELD AND MA

e 3
Site Space around the current carrying conduct
Ofa magnetic field in a similar manner as we

% ¢ CONDUCTOR
N CARRYING
CURRENT

GNETIC INDUCTION
or (or a magnet) is defined as the
have defined (in Ch. 5), the space



&3 MAGNETICFLUX . . . .
The magnetic flux ¢ across a surface may be defined in the same way as the electiic

flux ¢ for the electric field. Thus the total number of magnetic lines of induction
threading a surface is called magnetic flux through that surface. If the magnetic
induction varies from point to point on a surface and the surface is not normal to the
lines of induction everywhere, then magnetic flux through the surface is calculated
as follows : j Rt ieriaig ol

Consider an infinitesimally small area 'elé:'_n)"ientj ds, normal to which makes an
angle 8 with the direction of line of induction B (Fig.'6.2), then the flux dbj across

the area dS is given by an exactly similar expression which defines electric flux, i.e.,
o T i o .

" NORMAL TOdS

LINES OF INDUCTION )
Fig. 6.2. Magnetic flux through a small area




MAGNETIC FIELDS

257
- -
dog= B.dS =B dS cos 6
. Total flux across a finite area S is given by
. - -
0p = jdq}ﬂzig'dS:!BdScose b e

o, magnetic flux ¢p through a surface S is the surface integral of —B) over the
sufﬁlce S-

—
If B is uniform and normal to the finite area S (i.e., 6 = 0°), then the flux over
the area is
0 = [BdS =B |ds
S S

- (. B is uniform, so it is taken out of integral sign)
or bp = BS ' .. (6.2)
Definition of Magnetic Induction or magnetic flux density. From equation (6.2),

wedefinemagneticinduction B atapoint as theflux (number of magnetic lines of induction)
passing through a unit area held perpendicular to the lines of induction at that pointi.e.,

B= =2 Ttis often referred to as the magnetic flux density.

Magnetic flux may be positive or negative depending on the angle between the

- -
vector B and vector area dS is acute or obtuse.

Example 1. Calculate the magneticflux across the surfaces, eachof area0.1 sqm in
() xy plane (i) y-z plane and (iii) z-x plane in a region specified by the magnetic

_-9 -~
feldvector B =27 tesia. -

- = ;
Solution. Nf@netic ¢z= B.A =BA cos 0, where 8 is the angle between vector

S
Bind 4 (i.e. normal to the plane of area).

_) A
Given, B =21 tesla.
A=0.1m"
(9) For surface is x-y plane, 8 = 90°

—_ =
0., = B.4 = BA cos 90° =0

(if) For surface in y-z, 6 =0,
| 0,.. = BA cos 0° = BA =2 x 0.1 =02 weber

(i) For the surface in z-x plane, 8 = 90°

b ‘ ¢z-x=§.:;=BA00590°=(D
A wl o



y
5. (AYONITS OF B AND UNITS OF FLUX

_)
/5,1, unit of B is called tesla (7). If we put F = IN, g, = 1C, v = | ms™' and
76’ = 90° in equation (6.5), we have

IN
ICx ms™ xsin90°
IN 1C J
= s—=1A
IAXIm [ Is
=INA™" m™" |
and it is given a special name weber/m? or tesla.

B:

. -
Thus magnetic induction of B at a point is said to be one tesla if, a charge
of one coulomb moving with a speed of one rn::‘f at right angles to the magnetic

- i
induction filed B at that point, experiences a force of IN.

4 —
cgs electromagnetic abbreviated as cgs m unit of B is called a gauss.
1 tesla (7) or I wb m‘2 = 10* gauss or 10* maxwell cm™
Units of flux. Since flux ¢y = BS, so the S.I. unit of magnetic flux is weber or

tesla m? and cgs m unit of magnetic flux is maxwell.

1 weber = 10° maxwell

65. (B) DIMENSIONS OF MAGNETIC FLUX
= B x area. Therefore, to determine the
dimensions of magnetic flux ¢p, we have to determine the dimensions of B We
know that force experienced by a particle having charge ¢ moving perpendicular

o magnetic flux density B with a velocity v is given by

F =quB
B oML

_— —— =

gv qL -

MLT™2

[Wh AL - i
®re gT~! = 4 which represents current i.e., ampere A]

We have seen that the magnetic flux ¢

—_—



- MEBECHANICS AND ELECIRICITY (M.D.U)

Since, -+ ¢p =B % area
MLT™

L q)B == T X Lz'

or Op = M'I*T 24!

Hence dimensions of magnetic flux are one in mass, two in length, minus two |
in time and minus one in ani&& '



s magnetisation / and also magnetic induction B. I?ifferent values of 7 ang
determined by using experimental methods for different values of f ,, i e

obtained by varying current passing through the wire. Magnetisation ¢y,

. . . TVeS arg
obtained using these values.
(7.4, CYCLE OF MAGNETISATION-HYSTERESIS
The behaviour of magnetic materials when subjected'to cyclic changes of ry, gnetic

field, were first studied by Sir J.A. Ewing. |
A typical B-H cycle is shown in Fig. 7.2. lo-r 4 A
To take the specimen through a cycle of
magnetisation the value of H, magnetic
intensity is gradually increased from zeroto « ()
ON. At O when H is zero, I, the intensity of —F4—
magnetisation is zero and the flux density B .
1salso zero. As H increases, B also increases
along the curve 04 till the magnetic.

“ saturation state 4 is reached corresponding .

to the field ON. Any further increase in & - .-

" results no more increase in I or B.

bt L2 T F PE— x

Fig. 7.2 Hysteresis Curve

If H is now decreased from NO to zero, L or B also decreases but does not trace
back the path 40. The descending branch of the curve, AC always lies above the
ascending branch OA. The value of B does not becomes zero, when H becomes zero,
It still has a value equal to OC. This lag of the magnetic flux density or intensity of
magnetisation I behind the magnetic intensity H is called Hysteresis.

- The magnetisation OC left in the specimen when the magnetising field (magnetic
n-intensity) is reduced to zero is called the Residual Magnetism or Retentivity or

- Remanance. 1t gives the magnetisation retained by the sample, when it behaves
like a permanent magnet. ' |

If the magnetic intensity H is increased in the reverse direction from zero to
OK, the value of B further decreases and becomes zero, when H has a value equal to
OD. The magnetic intensity H (=OD) required to reduce the magnetic flux density 10
zero is called the Corecive Force or Coer-civity. 1t gives the ability of the magnetic
substances to remain magnetised even when subjected to demagnetising field. If
the value of H is further increased to X, the flux density B also increases till the
magnetic saturation state E is reached. If the value of H is decreased from X to 0
B decreases till the stage F is reached. After this, H increases from zero to ON, B
changes till the magnetic saturation 4 is reached.

When H is changed frc;m ON to OK throilgh zero and back again to ON, the -
'value of / or B changes along the path ACDEFGA, which gives the I-H or B-H
curve for the material_. This closed curve is called the hysteresis J’ooa



@6, CALCULATION OF HYSERESIS LOSS
To determine the Hysteresis loss, let us co

of cross section a over which a wire is wound having » turns. When the current i

allowed t_o pass through the wire, the iron bar gets magnetise;ﬂ.'”l'he magneti: l;lul}j
linked with one turn of wireis equal to = Ba where B is magnetic flux density
of the magne'l'ls.ed wire at any instant, When the current in the wire changes, the
magnetic flux linked with it also changes and an induced e.m.f. is produced i1; the

wire vs{hic.h according to Lenz’s law opposes the change in current. The induced
e.m.f. 1s given by

nsider an iron bar of length / and area

d
-.—._n-——
dt
d dB
=-pn—(Ba) =-na—
B e

The negative sign shows that direction of induced e.m.f. opposes the cause -
Which produces it. The power consumed in maintaining the current  against induced
em.f. is given by =

ei= ndﬁi '
dt :
But i = Al e b [ for a solenoid H = 3—;-1-]
n
.dB_HI| dB
- kil ol PR | ¢ frosied
T dt
Energy spent in time 4t is given by
B
47 = alFr 22
or dW = alH dB

Net work done for a complete cycle of magnetisaticfn is
W= [aw —al§H dB

Vhere integral (ﬁ stands for integration over the closed cyclce.

given by



'_Bu't . §HdB = area of (B-H) loop
- Work done per cycle of magnetlsatmn
' = al x area of B H loop
" But i vl 6 .. | al Volume of 1ron bar
Work done per umt Volume per cycle of magnetlsatlon
' '— area of B-H Ioop

Hence in SI umts work done or.energy. loss per unit volume per cycle of
magnetisation is equal to ared of B-H curve. T hzs ZOSS of energy is dzsszpaz‘ed in |
the form of heat? R G SR !



3, IMPORTANCE OF HYSTERSIS CURVES

A

The hysteresis curves of magnetic susbstances as we have seen above give us
2 very valuable information required in the B

clection of suitable magnetic mateirals for - :
different practical and industrial applications, T
making permanent magnets, electromagnets,
transformers, telephone diahragms and chokes
etc. Fig. 7.5 represents B-H curves drawn for
softiron and steel, which are most commonly
used as magnetic materials.

e Seft Iron

Letus now discuss the selection of proper
magnetic material in practical application of - -
the following: S e

(1) Permanent Magnets. The permanent
Mmagnet must retain high residual magnetism
0 that they exert large force of attraction.
Moreover, the residual magnetism must last
longer and should have high corecivity. This factor is more importnat than the
ﬁTSt One to ensure permanent magnetism in the substance. The hysteresis loss
S0t of great importance since the permanent magnets are never put to a cycle
o Magnetisation. Thus inspite of the low retentivity, steel is more suitable for
i:cparing Permanent magnets on account of high corecivity, which is TEqUIrEorE
aDrenn:,inf::qt magnet. Some alloys which have high retentivity and high corecivity

Ve beep developed recently. They are cobalt steel, alnico etc: and are used in

Mak;
king Permanent magnelts.

Q
Suhy j &

Fig. 7.5 B-H ‘C_ur\_*.es for soft iron and steel

) Elet:tromagnets; In electro-magnets, the materials used are continuously
“ed to cyclic changes, the hysteresis loss should, therefore, be small. The



material used should have high values of intensity of magnetisation and magnetic |
induction with low values of magnetising field so that strong magnetic fields are
produced. Hence soft iron is best for this purpose.

(3) Transformer cores. In transformer cores, telephone diaphragms and chokes
etc., the materials used are continuously subjected to many cycles of magnetisation
in one second. The materials used for this purpose should have high magnetic:
induction and low hysteresis loss. Hence soft iron is best for cores of transformers
and chokesf:j ]




C7.11 LANGEVIN’S THEORY OF DIAMAGNETISM

We have seen that in an atom, electrons move around the nucleus in Clrcu]ar
orbits. A moving electron is equivalent to an electric current, acquires magnetjq.
dipole moment directed normally to the plane containing the electron orbit, An’
electron 1evolvmg in one direction will have magnetic moment in one direction an
electron moving in opposite direction will have magnetic moment in tl?e Opposite -
direction. According to Langevin, the electrons in the atoms of a diamagnetjc
substance revolve in such a way that the magnetic moments of the electrons neutralise.
each other and there is no net magnetic moment due to orbital motion of electrons,
i.e., there is no unpaired electron is a diamagnetic substance. When some magnetic '_
field is applied perpendicular to the plane of the orbit of the electron, the angular:
velocity of the electron would change without any change of the radius of the orbit,
The increase or decrease in angular velocity will depend upon the direction of the
magnetic field applied. The change in the angular velocity causes change in magnetic
moment of the atom, which is calculated as follows : i

Determination of change in magnetic moment 4
Letus consider an electron of mass m and charge e coulomb in an atom revolvingf

round the nucleus in a circular orbit of radius r in the X-Y plane with velocity U'

in the anti-clockwise direction with nucleus at the orlgm (Fig. 7.6 (a)), then the.
orbital magnetic moment is -

= . —elrP
pﬂi_ 2

£

2Ty =)
- (Negative sign indicates that the direction of magnetic
Z- dlre(,‘uon)

) 3
( Pn = orbital current X arca of orbit = ev xntr? = £y pp2 evr)

moment is along negative |

P

. : A
o Hﬁ 5
NUCIGOL}S’ Nucleous
o,F 0 > I
b T ’
A
v Fm
—F
. v
i ’ » z-axis ¢
@) (b)

Fig. 7.6. Langevin’s theory of diamagnetism



=10, where o is angular velocity of the electron o
2

)
e r -

pm e

AS

.. (7.19)

The total magne?ic moment of the atom is the
i) el 61516 vector sum of the magnetic

The centripetal force required for moving the electron is ci :
: - s circular orbit i 2

py the Coulomb’s force of attrac.;hor'l between the nucleus and the eléggés pm;lded

wWﬂl'dS the centre O as shown in Fig. 7.6 (b) and is given by n and acts

F=— =mrao’

. 3 - -
Suppose a uniform magnetic field B is now applied in the Z-direction. Then
-

2 " o
The instantaneous velocity vector v of the electron when its radius vector r

= A
B=Bk
. - w . _} ~
nakes an angle 8 with x-axis is given by v =v(—sin8i +cos j) where (-sin0 P
cos 0 7) is the unit vector in the direction of v . Thus the magnetic force exerted
5 |

by the field B on the electronis

= - —

Fm =—el X B

=— ey (-sin 07 +cos Bj) x B .
= _ev[-BsinO(j)+Bcosbi]
=— evB (cos 0i +sinbj)
) is the unit vector in the direction of the radiu

outward unit vector. The force Fm
and will aid the electrostatic force

s vector
-

y Now (cos 07 + sin 0
r of the electron and is usually called radially

is thus a radially inward force of magnitude evB

g
F (as shown in Fig. 4.6.(c)). The net force acting on the electron is
= 3 05 I
= mre’ + eBv
= mr@’ + er©B ... (720)

ard force in the presence
n absorb the additional
ster in the original orbit
law, sO r will not
he additional
d that faster
this effect is
rturbed

ghtly greater inW
w the electron ca

s or by moving fa
quantum

of Thus the electron will experience asli
fml;an.getlc ficld than in its absence. NO
o bof}:thc-r by coming close to the 11'ucleu
thange Since radii of electron orbit are govemec.l l?y S
e ge .and the electron will move faster in tpe original orbit under
mo%_neuc force, i.e., velocity of the electron increases. It .rnay be r;ote
Ve ion of the electron should further increase the magnenc force, ut
¥ small and we are justified to calculate the magnetic force with the unp®

s applied. If new

tic field wa
nagnetic ot Aw), then

VElfi-(:ity 4 . x §
v of the electron, which 1t had before o 1 _
f magnetic field 1

an .
8ular velocity of electron after the application 0
f=mr(®+ A(D)3 ,

o NI



so eqn. (7.20) becomes
mray + eroB = mr(o + Aw)*
mrey’ + ermB = mroy + nn'(A(n)z + 21mrro) Ao
As A is very small, so the term (Aa))2 can be neglected
ermB =2mro Ao

or Aw = il -(7.21)

2m
The frequency Aw is called Larmer’s frequency for the orb-itin g electrons,
Because of this change in angular velocity, the new magnetic moment of the
electron is obtained by changing o to ® + Aw is eqn (7.19). Therefore ’

R CRA)
p m = 2
So, the change in magnetic moment of the electron due to applicd magnetic |

ficld will be

-_’ ., . -
A p, = final magnetic moment — initial magnetic moment

2 2
__e(o+Am)r kﬂ(_eﬂ)r k]

2 2

- 2
or =-3_A‘2°" p .. (1221

Let us now consider the case, when the electron is orbiting in the clockwise

- P :
direction. Now the vector area a of the current loop will be —/2 % and the original
magnetic moment will be

? ew A et .
i BN PO P
L ( zﬂ)(fc k) z k

Since the velocity of the electron isnow v (sin 8 ; —cos 0 /), the magnetic force |

- - - — . w3
Fn=-evxB=-vB(sin0i -cos@j)xk
=evB (cos © [ +sin 07)
and is hence in radially outward direction.
This will oppose the electrostatic force and the net force on the electron shall be

less than what it was in the absence of the magnetic force i.e., f=F — F. The electron
will thus be slowed down in its orbit and its new angular velocity will be & — A®

- _ 2 2
Final magnetic moment p, = e(w - Aw)r i

2
so0, change in magnetic moment
= e(m - Aw)r? + 2 .
Ap, =2 : s k—"’“;" k

2
o eAwr kA
2




pich 18 exactly t'he same when the electron was orbitin g inanticlockwise direction.

us, e magnetic moment of all the leecn‘c'ms orbiting around the nucleus ina plane
orpendic ular to the exter;_fal f‘nag.nencﬁela changes by the same amount irrespective
‘z fthe fact that they are circling in the clockwise or anticlockwise directions.

gubstituting for Aw from eqn. (7.21) in eqn (7.22), we get

)
=2 —e“r°B -
A L
P 4m
= .. (1.23)

Negative sign ineqn (7.23) shows that the change A p = 18 opposite to the applied
- —
magnetic field B. Thus the specimen is repelled by the external magnetic field B.

-3
Further, as A p,, is small, so specimen is feebly repelled by the magnetic field.

From the above discussion, it is clear that when we place anatom in an external uni-
formmagnetic field, a dipole moment is induced in it. If we consider an atom having two
electrons moving in the same orbit but in opposite direction, then the net magnetic
dipole moment of such an atom is zero. Because the dipole moment due to one elec-
tron is equal and opposite to that of the other. Suppose now we place this atom in
anuniform magnetic field, the induced dipole moment of one electron will increase
and that of the other will decrease by the same amount.

Thus, the two magnetic moments in the presence of the magnetic field do not
cancel each other, but are added to give some magnetisation to the material in the
direction opposite to the applied field, giving rise to net change in dipole moment

2y
¢qual to .ﬁp m~ (_Apm) = 2A Py
_Also the electron spin can be left handed or right handed and the spins of a
parr of electrons may be parallel or antiparallel. If the two electrons in an atom are
having opposite spin, then the magnetic dipole moment due to spin motion will
also cancel each other. |
Thl}S the substances whose atoms, ions or molecules do not have a resultant
E:ggeﬁc moment due to orbital and spin motion in the absence of an external
i pgosei:]c field and magnetic moment is induced in the presence of magnetic ﬁel_d
allg {; to the apPlled field are called dfgmagnet:’c substances and phex}omenon is
Mater amagnetic gﬁfecz. The same applies to other atoms and he:nce a dtamfzgnetlc
1alin bulk exhibits a magnetic moment opposite to the applied magnetic field.
ittep cli* ttl;e Specimen is magnetised in a direction opposite to t-he magm?tising field,
Such 50 bi:et itself pe.rpendlcular to the field. Hence, a rod of diamagnetic substance
muth sets jtself perpendicular to the line of force or transversely.

urther : ) : . :
: fer, if a specimen contains N clectrons per unit volume, the diamagnetic
0

mel‘lt per : M . - g
unit volume is obtained by multiplying A p,, to N, then

- -
I =NAp,



STt
Ne“r- 2

i B
4m
] —-)
(04

- = : :
From the above eqn, we see that / o /1 and the proportionality

2.2 :
oy il (7.24)
4m _ '
is called diamagnetic susceptibility. Substitution of known values, gives y,, and is|
of the order of 107> Bohr megneton. This relation indicates that the d1amagnet1c
susceptibility is independent of the temperature. |
As diamagnetism is an effect arising from the orbital motion of the electron, so it
must be present in all types of matter but this effect is masked generally by stronger
effect of paramagnetic or ferromagnetic benaviour that also occur simultaneously
in the material. Diamagenetism is prominent in materials which consist of atoms
with closed electron shells as in these paramagnetic effects cancel ouQ
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Electromagnetic Theory
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SYLLABUS

Maxwell’s equations and their derivations. Displacement current, vector and Sc'a-
lar potentials, Boundary conditions at the interface between two dlfferc?nt media,
Propagation of electromagnetic wave (Basic idea, no derivation), Poynting vector

and Poynting Theorem



E|ectr0magnetic Theory
heionals

y INTRODUCTION

[n the previous chapters, we have discussed with steady state problems in
electrostatics and magnetistatics considering electric and magnetic phenomenon
independent of each other. When charges are at rest,_ the electrlc_ﬁeld produced is
satic and when charges are in motion, then in addition to electric field, magnetic
field is also produced. Whenever the electric field at a point varies with time then
a magnetic field is produced. Similarly, whenever a magnetic field ata point varies
with time then an electric field (or e.m.f.) is produced. The phenomenon is called

clectromagnetism. . , .
The electromagnetic theory was developed on the basis of above phenomenon

with the help of four vector differential equations. These equations are known as
Maxwell’s Equations. Two of these relations are independent of time and are
called as steady state equations. The other two relations depend upon time and are,

therefore, called as time varying equations. |
§.2. DIFFERENTIAL FORM OF FARADAY’S LAW OF
ELECTROMAGNETIC INDUCTION

By Faraday’s law of electromagnetic induction, it is known to us that an induced
em.f. is produced in a circuit due to the change of magnetic flux linked with it and

the induced e.m.f. ‘¢’ is given by the equation.

R ; _ N
erlce, kgl (8.0

where 92 ; '
ere 3 5 the rate of change of magnetic flux.

But the magnetic flux ¢ through a closed circuit is defined by the surface integral
_).

Ofmagnetic induction B -over the surface i.e.

o= 35:’5-{1’5 .(8.2)
S - -

Where § is any closed surface.
Substituing for ¢ from eq. (8.2) into eqn. (8.1), we get
—5

e= —95-——.d§ | (83)

Bute.m.f ‘¢’ is defined as the work done in taking a unit positive charge round

a Cl()sed . . = . . . 3 i ¢
clo path in an electric field E and is given by the line integral of E over the
Sed path j.e., '



MIAXWELL’S EQUATIONS

The basic laws of electricity and magnetism, which we have studied in the
preceding chapters can be summarised in differential form by the following four
equations. ' |



VE=T (811
V== (8.11)
(Gauss s law in electrostatics)

_—}
(i) V.B =0 (8.12)
(Gauss § law in magnetism)
_}

- = oB _ ‘
if) VXE==— (8.13
(iif) V' 2y (8.13)
(Faraday § law of electromagnetic induction)

_)
() VXB =1y T (8.14)

(Ampere’s law)
. 4 -
These equations are for electric field F and magnetic induction B in vacuum

. _) .
in the presence of electric charge density ‘p’ and electric current density J written
in S.L units.

Equation (8.11) is the statement of Gauss’s law and gives a relation between
charge and electric field. It is true for static as well as dynamic fields i.e. for
stationary and moving charges. It is because there is no experimental evidence to
show that this equation needs any modification for varying currents. Eqn. (8.12) is
the general law for magnetic fileds corresponding to Gauss’s law for electric fields.
It states that magnetic charges or isolated magnetic poles do not exist. Therefore,
it continues to remain valid for varying currents. Equation (8.13) is the Faraday’s
law of electromagnetic induction and describes the electric field of a changing
magnetic field and is true in general. Equation (8.14) representing Ampere’s law,
which describes the magnetic field due to current density and shows that the current
ina conductor sets a magnetic field near it. This equation was derived for steady
currents and does not hold for time varying fields.

James Clark Maxwell, while studying the electromagnetic laws (eqns. 8.11 to
8.14) noticed that there was something strange with equation (8.14) and it renders
the above set of equations inconsistent. Maxwell modified this equation by bringing
'n a new phenomenon, the concept of displacement curent. (This concept was
unknown at that time but has been subsequently verified by experiments). If we
take the divergence of equation (8.14), the L.H.S. of this equation becomes zero as
the divergence of curl of a vector as always zero, hence equation (8.14) becomes.

— f —
divcurl B =div (1, J)
_)
=Updiv J =0
- —
or div J =0 (815)
-
Thus equation of continuity div J + %’- = () shows that % must be zero. This -
t

";Er?ang that total flux of current out of any closed surface is zero. This is valid only
4 Steady state phenomenon and not for charge distributions and fields which are
ing with time. For example, we might have a condenser which is discharging
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through a resistance. Maxwell therefore, suggested that the definition of g(4] Crep
density given by J is incomplete and suggested that some thing must be added
-
J . So writing equation (8.14) in the following form, we have
- = - =
VxB =y, (J+J') ~(8.16)
_)
Further in order to identify J', we take divergence of above eqn. So, we get
- 5 - - = 22
V.(VXB) =Yy V.J+u,V.J"
"
But V.(V X B) is always zero *

- = 5 -

o P (V.J+V.J) =0

- = - - '
or V.J==-V.J -(8.17)
But from equation of continuity
- = ap _
V.J =ik : . «(8.19) |

Inserting for p is the above eqn. from eqn. (8.11) i.e.,

P =& (E’).-. IE).,_ we have

V.7 = 2@VE
= =— —(£ .
_'_'_BI(G )
it i b, |
or V.J == V. = V. (s E):
2@ s 3D
o (ARl ST ML gl
J Sk ot

- -
where D =g, E is displacement vector in free space.

— J ; |
Substituting this value of J' in eqn. (8.16), we have

- -5 -
VXB =, [ ‘].{_a_D.jl .(8.20)
Jr |-
The above eqn. iFf the Ampere’s law in modified form and is consistent with the
continuity equation since the divergence of both sides is zero. Maxwell called this
_}
= L o 8D _ ' ‘
new term added to J i.e., — as the displacement current density since it arises

ot

—
when the electric displacement vector D is changing with time. The existence of
displacement current implies that time varying electric and magnetic fields in space
are interdepdent i.e., a changing clectric field being able to produce magnetic fiel

and vice versa.




The set of equation (8.11 to 8.14) thus becomes -

o = P N
(f)V'E'gu | () V.B =0
a‘*-)
-» 2 B 4 ¢ -
(fif)VxE=-——aT (iv) Vx.;:uo{_j_i_%il

These equation v‘vere first stated and used by Maxwell and are thus known
" Maxwell’s equaflons: These equations are the basis of all electromagnetic
henomenas. These equations are valid for nonhomogeneous, non-linear and even
pon-istotropIc media. These equations can describe very complicated situations.

[fwe consider a relatively simple situation, a static case, then nothing depends on
fime £.€-, all charges are permanently fixed in space or they move steadily in the

circuit SO that p and J are constant in time so that all the time derivative terms in
Maxwell equations are reduced to zero. Hence the Maxwell equations in a static
problem become

Electrostatics
V.E=2X
(o -
- = ;
VXE =0 ] '.'a—fi=0 - «(8:21)
i |0
Magnetostatic
- -
V.B=0
i VYT - Ty, .
VXB=}yJ %—t= 0 ..(8.22)

Thus in static case, the four equatiohs have been'sepa;ated into two pairs.

-
The electric field £ .appears only in the first pair of equations (8.21), whereas

—
magnetic field B appears in second pair of equations (8.22). And we see that two

fields are not inter-connected. This shows the electricity and magnetism are distinct
Phenomenas so long as we are dealing with static charges and currents. From the.se
stafic equations, we also find that electrostatic is an example of a vector field with
%ro curl and given divergence whereas the magnetostatic is an example of yector
field with zero divergence and given curl. The intcr-depe_ndencc of electric and
Magnetic fields appears only when there are some chang_es in charges and currents
and time derivatives in Maxwell equations become significant.

- -3 ..
The lack of symmetry in these equations with respect to B and E is entirely

-3
. 3 r d
Y to presence of electric charge densify p and current density J . In empty an

- : :
fee Space p and J are zero and Maxweil’s equations becomes
__)

- -

- = - _’_ﬁ Q_D_
V.E_—'O,V ZO,VXB_IJ‘O ot



=5
e dB

—
and VXE=-—
ot :
: These“equations are called Maxwell’s equation in free spac
85 DISPLACEMENT CURRENT

_)

. ' dD
The equation (8.20) shows that the vector field S appears to form g
continuation of the conduction current (the true current that flows through a

-3
conductor) distribution. Maxwell called it as displacement current density J*,

since the first term on the R.H.S. of equation (8.20) is conduction current density
—

¥ JLk AT aD . .
J . As has been shown above, the introduction of this new term =7y 1s necessary

for rendering the relation VxB = Ko 7 , between the current and magnetic field

consistent with the continuity equation. This brings to light a new induction effect
in which a time varying electric field produces a magnetic field in a similar manner
in which a changing magnetic field produces an electric field.

The concept of displacement current permits us to retain the notation that current
is continuous, a principle well known for steady conduction currents. For example,
in a parallel plate capacitor, connected across a source of alternating e.m.f., a current
I enters the positive plate and leaves the negative plate. The conduction current /
(given by the source) in the circuit is not continuous across the gap between the
plates, as no actual charge is transported across the capacitor gap. This current cannot
conduct long and will become zero when the capacitor is fully charged. According
to Maxwell, the changing electric field takes the place of conduction current inside

"the gap between the capactor plates and it gives rise to induced magnetic field.
During the time, the capacitor is charged or discharged, the displacement current I’
in the gap can be shown to be exactly equal to the conduction current / in the lead
wires and plates as follows, thus retaining the concept of the continuity of current.

If at any time, ¢ be the charge on the plates and 4 be plate area, then the

magnetitude of the electric field £ in the gap between the plates in given by

g
g, 4
Differentiating the above, we get
gg 1l a, -

dt eg,Addt gyd
Also displacement current density

(-+ D=5&F)

dE
Substituting for = from above, we get



Jrzgo[_l__ ]:i
€04 A

-, The displacement current /” in the gap between the capacitor
=Jd=I

It means that dispJacement current in the

gap between the capacitor plates is identical
with the conduction current in lead wires.
This shows that the concept of displacement 1
current satisfies the basic principle that the
current is continuous. Thus the conception
of displacement current makes the current
continuous through the entire circuit including.
the capacitor (Fig. 8.1). '

The concept of displacement current is very important for insulators and for
free space where the conduction current vanishes. For conductors, the concept of
displacement current is not of much importance as in any. conducting media, the
displacement current is very small (less than 1% for frequencies less than and j}ual

=

T

ARALAA

S P |

‘r

Fig. 8.1 Concept of di‘splacement current

to 10" Hz) as compared to the conduction current and thus can be neglected



 89-DERIVATIONS OF MAXWELL'S EQUATIONS

1. Derivation of Div E V E Bl or V D =P

€
The equation represents Gauss’s law in electrostatics, which states that the

oy 4 ¢
integral IE : dg' of normal component of - over rhg closed surface is equal to the

total charge enclosed by the surface.

- Let us now consider a surface Sboundihg a volume V'in a dielectric medium. I
the dielectric medium, total charge consists of free charge and polarisation charge. If
pand p, represent the free charge density and polarisation charge density at a point
in a small volume element dV, then Gauss’s law can be expressed as

[E.ds =-‘E—I(p+pp)d[f o L .(8.29)
NA . ¥

- | VTR A j
If P is polarisation, which.is electric dipole moment per unit volume or

- - = o ;
polarised charges per unit area, then div P or (V. P) gives the amount of polarised
charges in a unit volume smce polansed charge Is reverse in nature with respect to
real charges, therefore, | - |

=
Poi=idivp, ‘
- - 1 =
[E.ds = —[(p-divPyav - .(830)
. S ' €9 V ;
From Gauss’s divergence theorem,

jE s —j(dwE)dV. e B3

Insertmg (8. 31) in (8. 30) we have

j(dw E)dV = — j (p—divP)dV (832
4 €oy ‘

oo [div(eE+P)av = [pav | (833
Vv

I‘.




_—’ -) _-) - .
But €9 £+FP = D = electric displacement vector.

., Equation (8.33) becomes
[aivD dv=[pav
Vv 4
] -
of divD =p
- -
e st b TP ..(834)
- —
Since v D=¢gE
- = Y P ¥ - :
V.E=— (rh ..(8.35)
€ '

- - =
2. Derivation of Div B =0 or V.B =0
This equation represents Gauss s law in magnetostatics. According to this law,
the total normal magnetic induction over a closed surface is always equal to zero

as no free magnetic pole exists. |
The magnetic lines of force are either closed curves or go off infinity. Hence

the number of lines of force entering any closed surface is exactly the same as

. . o » _} .
the number of lines leaving it. Thus the magnetic induction B across any closed
surface is always zero. g 0

=3 . =3 : ; 4 . |
[B.ds =0 - e ..(8.36)
s | _ :
Using Gauss’s divergence theorem, v
o - | =
[B.ds = [divBaV | E LA
S % e, _ s
Comparing equations (8.36) and (8.37), we have .-
[divBar =0 |
v

o divB =0 | |
- \ i . i 1 i
o V.B=0 ... .. | o L ..(839)
B G . B T
3. Derivation of Curl E = > or VXE = r

_ According to Faraday’s law of electromagnetic induction, the induced e.m.f. is
8lven by negative rate of change of magnetic flux, i.e.,,

% - s pkiaad8.39)

byl oy

ESmn,

ot
‘The magnetic flux is given by

- Ig_ s ..(8.40)
S e



Ji0 IVLLACL AR VAN S £ AL VA Ahsmemr = = = -

or PR N gl g8 | ~(8.41)

[Since surface is fixed in the space and B changes with time]

The e.m.f. is also glven by line integral of electnc field E over the circuit,

e E a'l ' ' ..(8.42)
Comparing equations (8.41) and (8.42), |
_’
cﬁE dl = ~[— dS

Usmg Stoke’s theorem to change lme mtegral mto surface mtegral we have
_.)

jcuﬂf«: ds = _J’_- ds

( X i
IRl PO e
: : -, O
s
)
or 'Curll?-iJa_B =0
ot
\ 5 J
=% i =9 BB ; . ' -
VXE = s L5 ..(8.43
or at ' ; ] ] (8 )
= BD
4. Derlvatlon of Curl B VXB Ho J+a—t

To prove this refer to art. 8 9

8.1 CTOR AND SCALAR POTENTIALS
calar Potential ' e .

In case of electrostatic fields, we can talk about free point charges and Coulomb’s
law for their interaction can be applied. However, the situation is different in case
of magnetic fields, because of the fact that a free magnetic pole does not exist

Y
For an electrostatic field, the relation between electrosatic field intensity £ and
electrostatic potential is given by

E=-Vr A LM
-3 - - = oy
Therefore VXE VX(VV)=-VxVV =0 (- VxV=0)




Here V'is a scalar quantity.

put the curl of a magnetlc field- B is not zero, instead it is equal to ug—’
erefore, it is not posmble in general’ to represent the magnetic field B as a
gradlent of scalar field i.e., magnetic potentnal In general cannot be represented by

scalaf quantity. Only in the,region (in current free Space) where J= 0, VxB = 0,

. B can be expressed as gradient of a scalar field ;. e., B = —V V,, where V,, is called

* pagnetic scalar potential.
- =

In general, VX B #0

Therefore, we cannot express the magnetic field as the gradlent of magnetic
scalar potential at points where current exists.

vector Potential :
[n magnetic ﬁeld the divergence of a magnetic ﬁeld is always zero i.e.,
div B 0 ..(8.45)
Also by defintion, i.e., dwergence of curl of vector A is also zero :
ie., div curl A 0 SRS G - ..(8.46)
Comparing eqns (8.45) and (8 46), we have o E |

= curl A V x 4 ! ""--"."' . ...(8.47)

.. Comparing equatlons (8. 44) and (8 47), by analogy, vector A refers to magnetlc
' potent:al and is called the magnetic vector potential. Therefore, the magnetlc vector

potential A can be dezﬁzed as the vector, whose curl at any point g;ves the value

of the magnenc ﬁe!d B at that poznt Also the curl of magnetlc field B is given by

curl B = IJo * (8.48)
Therefore, from equatlons (8.47) and (8 48), we have
curl (curl A) HoJ N (8.49)

But curl (curl A)= VX(VXZ)
5 o -

—V(V A) (VV)A
( Ax(BxC)—Bx(A C) (AB)C)

-2 e 8.50)
)-V2A4 =peJ 2
enoidal

. f sol
If we choose the vector 4 such that its dwergence is zero iLe., 0

frome
ature, but its curl is equal to B i.e.,div A =0andcurl A= B then f
0) we have. ' '

quation



—Vz z? = l-l-o-_}
or oy =- Mg -(8.51)

: § -> 4 =
Substituting the values of 4 and J in component form in (8.51), we get

VA AT+ A, J+A4,k) = ~Ho (/5 P +J,]+J,k)

(i) v2 = T
or (i) V*4, = —]J,OJ (8.52)
(iii) Vz —1od,

Comparing each of the (8. 52) equations with Pmssmn s equation ih electrostlcs

€

ie, VV = P where p is the charge density, we find that each of these equation
is quite identical with the Poisson’s equation.

Now we know that the scalar potential ¥(x, y, z) gives us a simple way to calculate
the electrostatic field of a charge distribution. If there is some charge distribution
p(x5, ¥, 25), the potential at any point (x,, y;, ;) is given by

1 X9 V2,2 AT
Vx, y1521) = Ame Ip( zryz 2 g dfe22)
0y 12 '

where r,, is the magnitude of vector displacement (i.e. the distance) from source point
O (x3, 2, zz) to fixed point P-(x;, ¥y, z;). The integration is over the whole charge |
distribution. By analogy, the solution of the Eq. 8.52(j) is given by

Lo .[J (xz,hazz)dy
4‘Jt

A, (1,310 21) = (8.54)

N2t oal

where the volume element d V and distance r,, are as shown in Flg 8.2

(X4,4.24)
> ,

(x2r}'2v22)

Fig. 8.2 Potential at a point due to a charge distribution

Similar expression like Eqn. (8.54), can be written for A, ans 4,. When the
three solutlons are combmed we get the vector potenhal A in terms of the current
density J

”‘0 J(XstZsZZ)dV

.(8.55)
41y, N2

A (xl:yla zl)




In c.g.s. e.s.u. units, the above equation may be written as

_>
- 1pd(x,
A(xl,}ﬁ,zl)=z_l' (x2*y2’22)dV ...(8.56)

4 )
Equation (8.55) also satisfies the condition that div 4 = Q



ﬂNSVERSE NATURE OF ELECTROMAGNETIC WAVES

Awave, in which the value of variables in a planc perpendlcular to the direction
Opagation of wave are constant, is called plane wave.

Here we shall study the varlatlon of electrlc and magnetic field vectors i.e., E

and H of an e.m. plane wave with space and time.
(i) Variation with space Con51der aplanee. m. wave propagating along x-axis.

The values of field vectors E and H will be constant on any plane parallel to yz
plane i.e.,

Ok, 0%, 25, a5,

For E L = = =
R LT .(8.90)
- - oH oH , .
For H , L = y=8H2=§§i'=o " | (8.91)
dy 0z dy oz '
From Maxwell’s equation of free space, -
- >
VE=0
oE, 3E
Therefore, JE, +—2L 4 OF,
ox gy gz
3E.

~ which gives, o = - A Wt | ..(8.92)



Again from Maxwell’s equation,
- = - =
V.B=0or V.H =0

oH L
“9x Ody oz
_ o0H, _
which gives o =0 - ...(8.93)

Equations (8.92) and (8.93) show that there is no variation of E and I_{) along

x.—axiS.
(if) Variation with time. From the following Maxwell’s equation.

—_ 2 ='_l'l'_x | ...(8.94)

dy 0oz ot
dE, OE oH,, |
> M AR i ) ...(8.95
0z ox o ot | - ($33)
OE, JE - A o
d N O o 5 z L., -y i : T
an ax .ay_ H ar ” - ..(8.96)
oE, it
0z
oH. . . » (87
ot == : e w570
Again from Maxwell’s equation, |
> - 3D _ dE
VXH=—=eg—
_ ot ot
Comparmg rectangular components, we have
D, o, = saEx 8.98
_ay- ‘Oz %ot 5
O e —~
dz ox ot : ' s 329
OB “GHC" SRR WARLhEOI I | %
and Y _ X o z ;
Ty £ Y . o | .(8.100)
Applying conditions of eqn. (8.91) in eqn. (8. 98) we have
oH, '0H, - 814
dy oz e
oE, 0 iy . . .(810D

ot



From eqns. (8.97) and (8. 101), we find that there is no variation in the values

of E, and H, with time. Further from (8.92) and (8.93) we have seen that £, and H,

also do not vary with space. However, they may have constant values. But constant

values of E, and H, do not contribute any thing to the e.m. wave because for a

wave, theée field vectors must be oscillatory in nature. This shows that there is no
longitudinal component of field vectors in electromagnetic waves.
~ Now inserting E, = 0 in equations (8.95) and (8.96), we have

9B, _ 9, .(8.102)
Bx ot
aE. 7" BH Pl 8. srong altinbe
and B By PP E T el Ty S 0 ..(8.103
} ox 11 ot | ( )
Similarly inserting H, =0 in eqns (8 99) and (8 100), we have
oH OE # R e g, e 0 T Hist
it SO NE0 ..(8.1
B, b oL A TR g (5.109
OH VOB, Py oSl L e .
36 vy A g el

‘Equations (8.102) to (8.105) show that in e. m. waves E_and H are related with
each other and their space or time variation are not zero. We lherefore conclude
that e.m. waves are transverse in nature, '



ectromagnetic waves transport energy form one point to another point due
to the propagation of electric and magnetic field vectors through space. The rate
of transmission of energy per unit area placed perpendicular to the direction of

-
propagation of energy is called poynting vector and is denoted by S .
It is the cross product of electric and magnetic field i.e.,

S =ExH.; » .(8.107)
In electromagnetic waves, electric and magnetic vectors are oscillating
perpendicular to each other and the wave travel in a direction perpendicular to both
electric and magnetic vectors. Let a plane polarised e.m. wave be travelling along
X-axis, so that electric vector be along y-axis and magnetic vector along z-axis.

/ ot
8,18, POYNTING VECTOR
@

o3
[+

S =EXH

= JE, xkH,
= Jxk[E,H,]
- -
S =iEH,

b ) .
Hence S represents the energy propagating along x-axis per unit area per second.

In other words, poynting vector gives the time rate of flow of e.m. wave energy per
unit area of medium.

Units of S
The units of S are given by
S=EH
=Vni ' Am™!' =VAm? = Wm™ = Jg 2



i joule per second per square metre
ey

- B
gince, B=poH ol Hs—
_ . Mo
.. poynting vector can also be given as
-5 -
_)
S = Lo Watt m™
Ho

The above relation gives the intantaneous rate-of transport of energy ber unit

—
d B are the instantaneous values. In case of sinusoidally varying fields,

-
4162 @ E an
the average value of poynting vector is given by
< o 1. .2 = '
© 8, = —(Eqr X Befr)
Ho
=5 TR
2 _ Eo o4 By =Y where Eo and Bo are the amplitudes of
Since, = —= an = where Eo and Bo are the amplituaes o
1 e}ff \/‘2_ Bﬁ' JE |

av

—electric and magnetic fields.

{ i Bt Bo by =5
Sav = s = (Eo %X Bo)
s Ko 272 2m, s
: - 1 - - . ——
fil.e Sav = TR (Eo X Bo) ::.(8.108)
‘, =Ko |
- =
.. Note: Equation E _E Xz? is yalid Qniy,._wh.en applied to aclosej:'dsznfaceis‘urrounding

avolume. Ko

Dimensional formula of poynting vector
The magnitude of poynting vector is

S=EH : g
3
NOW o FIOI'CG =MLT ___MLT_::,A_.]
| Charge =~ AT |
o medn) A L L

. L
*. Dimensional Formula of §=MLT SAALT =MT

energy ML*T™ = MT
area X time ’T

Wthh 18 = .

Nustration of poynting vector
. _Consider a parallel plate capacitor cO
nFig.8.5. When key is closed, the capac

battery and akey, as shown

ected across a / .
it ‘ onduction cull ent

itor starts charging andac



I is set up in the circuit. A displacement current of density
__}
aD :
5 is also set-up between the plates of the capacitor. The $
+
e . _ Al = i
magnetic lines of force are circular and electric field is directed == X g

- -
downwards. The poynting vector Ex H is everywhere

directed into the capacitor.

l
|

—f

8.19. POYNTING THEOREM AND EQUATION
OF CONTINUITY Fig. 8.5 A circut

A containg capacitor
Consider a small elementary area d4 in which e.m. wave

_)
is propagating. Let S be the poynting vector which is time rate of flow of energy

— - -
per unit area or power flux per unit area. [Here area is taken as d4 not dS ,as §
is taken as poynting vector]

s |
~. Power flux in area dA4 is given by

dP=§.dA y (8.109)
. Total power flux through the closed surface is given by o
p= A AR pis - .(8.110)
- From Gauss’s lﬁw, we have e
P = — . )
P=[5.dd=[V.Sav (8.111)
— 4 _ I

)

where 6 S is the amount of energy per second or power flux diverging out of
the volume enclosed by the surface. -
From Maxwell’s equation,

VXE =-=r=-l=" ..(8.112)
Y - aD =~ oF
VXH =J+—=J+¢e— :
- . ot ot ~(8.113)
e ]
Taking scalar product of eqn. (8.112) with H , we have
-
=—uH —=——p—(H
H.(VxE) = pH .~ m—s = (H) .(8.114)
_)
Similarly, taking scalar product of eqn. (8.113) with E | we have

0, 2 II ,' ‘ |
qe;}—f(E) ..(8.115)



; Subtracting eqn. (8.114) trom eqn. (8.115), we haye

T e T = - = .
E(VXH)-H.(VXE) = J.E+L_§[€E2+HHZ]

| (8.116)
snee, A7 X B)=B(Tx ) = V.Bx =7 (i
.. Eqn. (8. 116) can be written as
10
—V.ExH =J_E e~ 2
R e [_EEQJ“”'H] (8.117)

LR | il
Since poynting vector § = ExXH
Eqn. (8.117) becomes

o =
V.S = —J E4mZrep? 2 12
za[’«3}E+].u'17]
2.2 g EEZ |,|_P[2 - -
V.S4+—| —+1—
i as[ TS } o

“Taking volume integral over the volume ¥ bounded by the surface 4, we have

jVSdr? d (EE ”‘H") V—~jJEdV'

_ ot 2
| Usmg eqn. (8.111), we have,

js dA+aat (852 ] jﬁ - | (8.118)
v . 2 Y |

where J §> d4 = Rate of flow energy or power flux

_[J Edv = Rate of work done by the clectromagnetlc field in dlsplacing the
A% V .
charge within the volume

2 2 1 _ :
-ag- [EE_ 4 "L_H__JdV = Rate of change of total energy [Electric + magnetic]
) 4 : ]
4
2

eE> ; _..__“H = tic ener;
- Here, Fas Electric Energy per unit volume and > Magnett gy

Per unit volume. |
If we write total energy per unit volume i.¢., energy density, U then
ra— ..(8.119)
JS dA+j——dV = -[J.EdV
or %
We can also write it,
: | .(8.120)

IJ Bay + ]2 ay = -[$ i
4



= =
Since J S.dA is the power flux diverging out of the enclosed volume, therefore,
A

- =) " i f E 2
—JS .dA is the power flux flow into the volume through 1ts surtace. Equation
A . i .

(8.120) represents Poynting Theorem, which states that sum of power spent b_y the
electromagnetic field in displacing charges and time rate of change of energy in the
fields equal to the power flow into the volume V-through its su?f{we- _
Poynting theorem is also the statement of conservation of energy in
electromagnetism. | _
Equation of continuity: In free space, J= 0, therefore, from equation (8.119),
we have

j?.dL'ja—UdV LY, | (8.121)
A V at |

-3
o el L1 J-Sdz = _J.E.).Ed]/ '. '} ...(8.122)
4 oy ot ; .
i.e., power flux through a closed area is equal to the rate of flow of energy from

the volume enclosed by the area

-5 - — = I
Now, [s.d4 = [(v.s)av | .(8.123)
. Comparing (8. 122) and (8.123), we have
[(v.5)av = -_[ing
o] Rl
Vv i vV i
22 . U
V.S =——
Pt s
- = oU '
(V-8) =l | .(8.124)

This-is equation of continuity.

70 BOUNDARY CONDI’QONS AT THE INTERFACE BETWEEN
DIFFERENT MEDIA

Let us now investigate the boundary conditions, which the time dependent
o B A -
electromagnetic field vectors B, E, H and D

satisfy at the interface between the
two media. |

—3
. (i) Boundary Condition for B

. . . "_)
Maxwell’s equation for magnetic induction B is given by

div B =0 .(8.125)

At any interface between two media, let us construct a pillbox like surface S
nsisting of four surfaces S;, Sy, S3 and Sy shown in Fig. 8.6,
co -



Applyi“g divergence theorem to the divergence of 337

. . My
: E over the volume enclosed by this surface, we have : + B,
V.BdV =0
£ x .-(8.126) S, MEDIUM 1
. - i . S
Convertmg volume integral into surface integral L
sing Gauss s theorem, we have ’ N
; |3 has =0 (8.127 s
B -0,
! ) Fig.'s.ﬁ A pill box surface
: | piereing the interface
where A1 s unit vector normal to the element of area dS between two media
of the surface. _
" Applying equation (8:127) to the whole surface of pill box, we have
S - - -
] J By .7y dS + ‘[Bz 1, dS + jB1 Ay dS + I B3 ., dS =0 ..(8.128)
S] SZ S3 I : S4

Third and fourth terms of equation (8.128) give the contribution to surface
integral from the walls of pillbox.

= 3 i . ' .
If B is finite every where and making the hei ght of pillbox, approaching zero,
then third and fourth term vanish. S; approaches S, and entire surface takes the

form A as shown in Fig. 8.6.
Thus when in limit 8h — 0, equation (8.128) takes the form,

> 2
[(B1.Ay + Ba.fiy)dA =0 .+(8.1284)
A
'As area A is arbitrary, then equation (8.128a) reduced to
Bi.fij+ B2.i; =0 ..(8.129)
Since.. . ., Ay =—ly "
.. Equation (8.129) reduces to
-3 . - i3
B] .nl _Bz.nl = 0
or - -
: Bin —Ban = 0
¥ gln = E?.n ~(8.130)
e, normal component of magnetic induction is continuous across the boundary.
{53 -
(i7) Boundary condition for E _
MaXWcll equation for electric field is given by
=2 83 (8.131)
curl £ = -—gt— |
¢ a rectangular 100P ABCD

- \bouAt. any interface between two media, let us construc
Unding the surface S shown in Fig. (8.7).



A E B
A ,L —*
Sh s Medium 1
Medium 2
v Y
D c
—>
E;

Fig. 8.7 A rectangular loop at the interface of two media.
Integrating equation (8.131) over the surface bounded by loop ABCD, we have

_)
jcurlé’.ﬁds = ﬂji‘?-.ﬁds i -(8.132)
5 S o ' '
Converting surface integral into line integral, using Stoke’s theorem, we have
- 9B "
—
[ E.dl = -[=.Ads
ABCD S ot
- = - - .
or I Ey.dl+ I E».dl + contribution from sides BC and DA
AB cD :
3B .
= —j—B.nds ..(8.133)
% Bt - £ &Y et i : :
 If 8k — 0, then the contribution from sides BC and D4 becomes zero.

-

If %ii is finite every where, then R.H.S. of equation (8.153) also becomes zero.

j.-E.)]l}}'l'JEzEE =0

AB (8/))
-5 = .2 D
or E1.AB+E2.CD =0
T T T : Y 5
or E\.AB—-E>. AB = 0 | [+ AB=-CD]
3 ' F
or Eu = Ex . ..(8.134)

= - wah :
where Ei and E2s represent the tangential components of electric field in the two
media.

. -
Equation (8.134) shows that tangential components of E are continuous across
the interface.

(iii) Boundary condition for electric displacement D
Maxwell equation for electric displacement is given by



22397

div = P _ .(8.135)
[ntegrating equation (8.135) over the pill box of Fig. (8.6), we have
—
[divDay = [pav (8.136)
4 ¥

Converting volume integral into surface integral, using Gauss’s divergence

IB.ﬁdS = Jp;dV
v

s
i I =2 o ~ i . . )
o JDl . dS + j D3 .1nydS + contributions from S; and S,
Sl ' S!
= [par .(8.137)
4

: . INow considering 84 — 0, the contributions from S; and S, also become zero
~ und instead of volume charge density p and surface density o should be used.

[ DuAyds+ [ Dy.hydS = [pdv =S .(8.138)
S Wie £AURE S TR R .'

= -
or Di.AS +D2.1,8;, =08

- - R :
- I S
D].nl—DZ.nl =0 : )
or D, -D,, =6 ' ..(8.139)

where D, and D,,, represent normal components of electric displacement in two
media. : M _

- Hence normal component of electric dispalcement are not continuous across
the interface and changes:by an amount which is equal to the free surface charge
density at the interface. - s !

(iv) Boundary condition for H el
Maxwell equation for magnetic field intensity H is given by
-3

curll H=7 +%I;2 .(8.140)

" Integrating eqn. (8.140) over surface bounded by loop ABCD Fig. (8.7), we have

- -‘|
Jeurl H ds = | 758 has .(8.141)
S : AL of |1 -

° : ’ 'we have
Converting surface integral into line integral, using Stoke’s theorem, we

: -
j ﬁd? =j }’+8_£2 .ndS
ABCD hY at



or F dl+ J I? dl + contribution from sides BC and DA

oD
=j Ja2=0 548
% ot iy

If 84 — 0, then contribution from sides BC and D4 also becomes zero.

-
- -
[Hidl+ [Hydl = | ?+%’2 s o (8.142)
AB cb 5 L. -
Tn liin Sh— 0 j-aﬂ oo )

If %—? is bounded everywhere and lim 82 — 0

JJ’ ndS—}Jln l

where J .| is the component of' surface current den51ty perpend:cular to the direction

of H component which is to be compared:
The eqn. (8.142), therefore, becomes

- - = k! '
| Hidi+ [ Hadl = J w | | ...(8.143)
AB (o/7
- e =
or H1 AB+H2 CD Jg '
or H; AB Hz AB Jo W . . _
or Hy~Hy=Jg n : | ...(8.144)

Thus the tangential component of magnetic ﬁeld' intensity'is not continuous at
the interface but changes by an amount which is equal to the component of surface
current density for perpendicular to the tangential component of H.

The surface current density is zero, unless the conductmty in mf'mte, hence for
finite conductivity, J¢= 0, so

H, 1t Hz: =0 .
> = M bR (8.145)
i.e., tangential component of magnetic field intensity is contimuous unless the medium
has infinite conducrrwty)



